Matteo Ferrante

Matteo Ferrante

Post Doc

matteo.ferrante@uniroma2.it

Biography

Matteo Ferrante is a Ph.D. candidate at the National AI Ph.D. – Health and Life Sciences program, studying neuromorphic architectures and generative therapeutic “telepathy.”

He has degrees in Physics and Biomedical Physics from the University of Pavia. His interests lie in artificial intelligence, precision medicine, and neuroscience.

His Ph.D. project focuses on decoding visual stimuli in the brain and generating activation maps using mappings between latent spaces of the brain and artificial neural networks.

Profiles

Created with Fabric.js 4.6.0

Scopus

Orcid

LinkedIn

Google Scholar

Pubmed

Gomp

Last 5 articles (Scopus)

opensearch:totalResults = 26
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57883960400)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=1&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105014517393

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105014517393?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105014517393&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105014517393&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S1566253525007225

  • Towards neural foundation models for vision: Aligning EEG, MEG, and fMRI representations for decoding, encoding, and modality conversion; Information Fusion; February 2026; DOI: 10.1016/j.inffus.2025.103650
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105014517393
dc:identifier = SCOPUS_ID:105014517393
eid = 2-s2.0-105014517393
dc:creator = Ferrante M.
prism:publicationName = Information Fusion
prism:issn = 15662535
prism:eIssn =
prism:volume = 126
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2026-02-01
prism:coverDisplayDate = February 2026
prism:doi = 10.1016/j.inffus.2025.103650
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 103650
source-id = 26099
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S1566253525007225

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

  • Evidence for compositionality in fMRI visual representations via Brain Algebra; Communications Biology; December 2025; DOI: 10.1038/s42003-025-08706-4
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105013869712
dc:identifier = SCOPUS_ID:105013869712
eid = 2-s2.0-105013869712
dc:creator = Ferrante M.
prism:publicationName = Communications Biology
prism:issn =
prism:eIssn = 23993642
prism:volume = 8
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s42003-025-08706-4
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 40847014
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1263
source-id = 21100924827
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85219197026

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85219197026?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85219197026&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85219197026&origin=inward

  • Transforming Multimodal Models into Action Models for Radiotherapy; Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; 2025; DOI: 10.1007/978-3-031-82007-6_5
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85219197026
dc:identifier = SCOPUS_ID:85219197026
eid = 2-s2.0-85219197026
dc:creator = Ferrante M.
prism:publicationName = Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
prism:issn = 03029743
prism:eIssn = 16113349
prism:volume = 15384 LNCS
prism:issueIdentifier =
prism:pageRange = 41-53
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1007/978-3-031-82007-6_5
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Book Series
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 25674
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9783031820069]

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105016789980

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105016789980?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105016789980&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105016789980&origin=inward

  • Generation of synthetic TSPO PET maps from structural MRI images; Frontiers in Neuroinformatics; 2025; DOI: 10.3389/fninf.2025.1633273
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105016789980
dc:identifier = SCOPUS_ID:105016789980
eid = 2-s2.0-105016789980
dc:creator = Ferrante M.
prism:publicationName = Frontiers in Neuroinformatics
prism:issn =
prism:eIssn = 16625196
prism:volume = 19
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.3389/fninf.2025.1633273
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1633273
source-id = 19700175167
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85215663825

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85215663825?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85215663825&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85215663825&origin=inward

  • Effective Dose Estimation in Computed Tomography by Machine Learning; Tomography; January 2025; DOI: 10.3390/tomography11010002
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85215663825
dc:identifier = SCOPUS_ID:85215663825
eid = 2-s2.0-85215663825
dc:creator = Ferrante M.
prism:publicationName = Tomography
prism:issn = 23791381
prism:eIssn = 2379139X
prism:volume = 11
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = January 2025
prism:doi = 10.3390/tomography11010002
citedby-count = 1

@_fa = true
affilname = Istituto Europeo di Oncologia
affiliation-city = Milan
affiliation-country = Italy

pubmed-id = 39852682
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 2
source-id = 21100904813
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)

  • Generation of synthetic TSPO PET maps from structural MRI images

    INTRODUCTION: Neuroinflammation, a pathophysiological process involved in numerous disorders, is typically imaged using [^(11)C]PBR28 (or TSPO) PET. However, this technique is limited by high costs and ionizing radiation, restricting its widespread clinical use. MRI, a more accessible alternative, is commonly used for structural or functional imaging, but when used using traditional approaches has limited sensitivity to specific molecular processes. This study aims to develop a deep learning...

  • Causal contributions of left inferior and medial frontal cortex to semantic and executive control

    Semantic control enables context-guided retrieval from memory, yet its distinction from domain-general executive control remains debated. We applied transcranial magnetic stimulation (TMS) to the left inferior frontal gyrus (IFG) and pre-supplementary motor area (pre-SMA) to probe their functional relevance for semantic and executive control. Across four sessions, 24 participants received repetitive TMS, followed by semantic fluency, figural fluency, and picture naming tasks. Stimulation of...

  • Evidence for compositionality in fMRI visual representations via Brain Algebra

    Electrophysiological and neuroimaging studies have revealed how the brain encodes various visual categories and concepts. An open question is how combinations of multiple visual concepts are represented in terms of the component brain patterns: are brain responses to individual concepts composed according to algebraic rules? To explore this, we generated "conceptual perturbations" in neural space by averaging fMRI responses to images with a shared concept (e.g., "winter" or "summer"). After...

  • Through their eyes: Multi-subject brain decoding with simple alignment techniques

    To-date, brain decoding literature has focused on single-subject studies, that is, reconstructing stimuli presented to a subject under fMRI acquisition from the fMRI activity of the same subject. The objective of this study is to introduce a generalization technique that enables the decoding of a subject's brain based on fMRI activity of another subject, that is, cross-subject brain decoding. To this end, we also explore cross-subject data alignment techniques. Data alignment is the attempt to...

  • Effective Dose Estimation in Computed Tomography by Machine Learning

    CONCLUSIONS: Our work demonstrated that machine learning models trained with data calculated by a dose-tracking software can provide good estimates of the effective dose just from patient and scanner parameters, without the need for a Monte Carlo approach.