Dionisia Naddeo

Dottorandi

dionisia.naddeo@uniroma2.eu

Biografia

Dionisia Naddeo è dottoranda nel programma nazionale di dottorato in Intelligenza Artificiale per le Scienze della Vita. Ha conseguito una laurea magistrale in Fisica presso l’Università La Sapienza di Roma, con indirizzo Fisica della Materia Condensata e Fisica dello Stato Solido.

I suoi interessi di ricerca includono le reti neurali, il deep learning, con un particolare interesse per l’applicazione delle reti neurali a grafo alla connettività cerebrale.

Profili

LinkedIn

Last 5 articles (Scopus)

opensearch:totalResults = 35
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57883960400)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=10&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105014517393

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105014517393?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105014517393&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105014517393&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S1566253525007225

  • Towards neural foundation models for vision: Aligning EEG, MEG, and fMRI representations for decoding, encoding, and modality conversion; Information Fusion; February 2026; DOI: 10.1016/j.inffus.2025.103650
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105014517393
dc:identifier = SCOPUS_ID:105014517393
eid = 2-s2.0-105014517393
dc:creator = Ferrante M.
prism:publicationName = Information Fusion
prism:issn = 15662535
prism:eIssn =
prism:volume = 126
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2026-02-01
prism:coverDisplayDate = February 2026
prism:doi = 10.1016/j.inffus.2025.103650
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 103650
source-id = 26099
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S1566253525007225

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105028987504

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105028987504?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105028987504&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105028987504&origin=inward

  • Beam angle optimization for radiotherapy using LLMs via reinforcement-learning inspired iterative refinement; Medical Physics; February 2026; DOI: 10.1002/mp.70258
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105028987504
dc:identifier = SCOPUS_ID:105028987504
eid = 2-s2.0-105028987504
dc:creator = Cammarota S.
prism:publicationName = Medical Physics
prism:issn = 00942405
prism:eIssn = 24734209
prism:volume = 53
prism:issueIdentifier = 2
prism:pageRange =
prism:coverDate = 2026-02-01
prism:coverDisplayDate = February 2026
prism:doi = 10.1002/mp.70258
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 41612144
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e70258
source-id = 17871
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105023212114

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105023212114?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105023212114&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105023212114&origin=inward

  • Reconstructing music perception from brain activity using a prior guided diffusion model; Scientific Reports; December 2025; DOI: 10.1038/s41598-025-26095-w
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105023212114
dc:identifier = SCOPUS_ID:105023212114
eid = 2-s2.0-105023212114
dc:creator = Ciferri M.
prism:publicationName = Scientific Reports
prism:issn =
prism:eIssn = 20452322
prism:volume = 15
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s41598-025-26095-w
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 41298548
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 42108
source-id = 21100200805
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

  • Evidence for compositionality in fMRI visual representations via Brain Algebra; Communications Biology; December 2025; DOI: 10.1038/s42003-025-08706-4
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105013869712
dc:identifier = SCOPUS_ID:105013869712
eid = 2-s2.0-105013869712
dc:creator = Ferrante M.
prism:publicationName = Communications Biology
prism:issn =
prism:eIssn = 23993642
prism:volume = 8
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s42003-025-08706-4
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 40847014
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1263
source-id = 21100924827
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105023715975

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105023715975?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105023715975&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105023715975&origin=inward

  • Optimal Transport and Contrastive Learning for Brain Decoding of Musical Perception; Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference; 1 July 2025; DOI: 10.1109/EMBC58623.2025.11253498
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105023715975
dc:identifier = SCOPUS_ID:105023715975
eid = 2-s2.0-105023715975
dc:creator = Ciferri M.
prism:publicationName = Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference
prism:issn =
prism:eIssn = 26940604
prism:volume = 2025
prism:issueIdentifier =
prism:pageRange = 1-7
prism:coverDate = 2025-07-01
prism:coverDisplayDate = 1 July 2025
prism:doi = 10.1109/EMBC58623.2025.11253498
citedby-count = 0

@_fa =
affilname =
affiliation-city =
affiliation-country =

pubmed-id = 41336218
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101033200
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)