Marianna Inglese

Ricercatore

PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali

marianna.inglese@uniroma2.it

Biografia

Marianna Inglese, ricercatore di Fisica medica presso l’Università di Tor Vergata, ha conseguito la laurea magistrale in Ingegneria biomedica presso l’Università di Roma “La Sapienza” nel 2014. La sua tesi, incentrata sulla correzione delle immagini PET per piattaforme ibride PET/MRI, è stata portata a termine presso il Lawson Health Research Institute della University of Western Ontario.

Ha conseguito il dottorato di ricerca in Bioingegneria presso l’Università di Roma “La Sapienza” nel 2019, ricercando metodi avanzati di quantificazione della perfusione per dati dinamici PET e RM. 

Marianna è assegnista di ricerca onoraria presso l’Imperial College di Londra, dove in precedenza ha lavorato sulla quantificazione dei dati PET dinamici e sull’applicazione dell’apprendimento automatico per gli studi radiomici. 

Ha ricevuto diversi riconoscimenti, tra cui un “Magna cum laude” dall’ISMRM e un premio per il secondo posto al Perfusion Workshop e al PET/MRI Workshop dell’ISMRM. È membro dell’AIIC, del GNB, del Capitolo britannico e irlandese dell’ISMRM, dell’ISMRM, del BNOS e dell’AISUK.

Profili

Created with Fabric.js 4.6.0

Scopus

Orcid

LinkedIn

Google Scholar

Pubmed

Insegnamenti

Gomp

Ultime 5 pubblicazioni (Scopus)

opensearch:totalResults = 25
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57892108100)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003921738

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003921738?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003921738&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003921738&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0009926025001266

Radiomics across modalities: a comprehensive review of neurodegenerative diseases; Clinical Radiology; June 2025; DOI: 10.1016/j.crad.2025.106921
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003921738
dc:identifier = SCOPUS_ID:105003921738
eid = 2-s2.0-105003921738
dc:creator = Inglese M.
prism:publicationName = Clinical Radiology
prism:issn = 00099260
prism:eIssn = 1365229X
prism:volume = 85
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-06-01
prism:coverDisplayDate = June 2025
prism:doi = 10.1016/j.crad.2025.106921
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = re
subtypeDescription = Review
article-number = 106921
source-id = 16616
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii = S0009926025001266

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85218008262

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85218008262?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218008262&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85218008262&origin=inward

A hybrid [<sup>18</sup>F]fluoropivalate PET-multiparametric MRI to detect and characterise brain tumour metastases based on a permissive environment for monocarboxylate transport; European Journal of Nuclear Medicine and Molecular Imaging; 2025; DOI: 10.1007/s00259-025-07118-0
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85218008262
dc:identifier = SCOPUS_ID:85218008262
eid = 2-s2.0-85218008262
dc:creator = Islam S.
prism:publicationName = European Journal of Nuclear Medicine and Molecular Imaging
prism:issn = 16197070
prism:eIssn = 16197089
prism:volume =
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1007/s00259-025-07118-0
citedby-count = 0

@_fa = true
affilname = Imperial College Faculty of Medicine
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 16676
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism; IEEE Transactions on Radiation and Plasma Medical Sciences; 2025; DOI: 10.1109/TRPMS.2024.3514087
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003208514
dc:identifier = SCOPUS_ID:105003208514
eid = 2-s2.0-105003208514
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 9
prism:issueIdentifier = 4
prism:pageRange = 460-467
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/TRPMS.2024.3514087
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0169260724003687

Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging; Computer Methods and Programs in Biomedicine; November 2024; DOI: 10.1016/j.cmpb.2024.108375
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85201677751
dc:identifier = SCOPUS_ID:85201677751
eid = 2-s2.0-85201677751
dc:creator = Ferrante M.
prism:publicationName = Computer Methods and Programs in Biomedicine
prism:issn = 01692607
prism:eIssn = 18727565
prism:volume = 256
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-11-01
prism:coverDisplayDate = November 2024
prism:doi = 10.1016/j.cmpb.2024.108375
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 39180914
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108375
source-id = 23604
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0169260724003687

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180171278

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180171278?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180171278&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180171278&origin=inward

The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI–Dynamic Contrast-Enhanced challenge; Magnetic Resonance in Medicine; May 2024; DOI: 10.1002/mrm.29909
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180171278
dc:identifier = SCOPUS_ID:85180171278
eid = 2-s2.0-85180171278
dc:creator = Shalom E.S.
prism:publicationName = Magnetic Resonance in Medicine
prism:issn = 07403194
prism:eIssn = 15222594
prism:volume = 91
prism:issueIdentifier = 5
prism:pageRange = 1803-1821
prism:coverDate = 2024-05-01
prism:coverDisplayDate = May 2024
prism:doi = 10.1002/mrm.29909
citedby-count = 6

@_fa = true
affilname = University of Leeds
affiliation-city = Leeds
affiliation-country = United Kingdom

@_fa = true
affilname = The University of Sheffield
affiliation-city = Sheffield
affiliation-country = United Kingdom

pubmed-id = 38115695
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 17267
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

Ultime 5 pubblicazioni (PubMed)