Dottoranda
saraverde98@outlook.com
Sara Verde è dottoranda in Biotecnologie mediche e Medicina traslazionale.
Ha conseguito la laurea triennale in Biotecnologie per la Salute nel 2021 e la laurea magistrale in Biotecnologie Farmaceutiche nel 2023, entrambe presso l’Università di Napoli “Federico II”.
Ha vinto una borsa di studio finanziata dal POR Campania FSE 2014-2020 ottenendo un attestato di tecnico del trasferimento tecnologico e della valorizzazione industriale della ricerca.
La sua ricerca attuale si concentra sull’esplorazione di nuovi strumenti diagnostici per le malattie rare.
CONCLUSIONS: Our work demonstrated that machine learning models trained with data calculated by a dose-tracking software can provide good estimates of the effective dose just from patient and scanner parameters, without the need for a Monte Carlo approach.
CONCLUSIONS: These results not only validate our method's accuracy and reliability but also establish a foundation for a streamlined, non-invasive approach to dynamic PET data quantification. By offering a precise and less invasive alternative to traditional quantification methods, our technique holds significant promise for expanding the applicability of PET imaging across a wider range of tracers, thereby enhancing its utility in both clinical research and diagnostic settings.
Decoding visual representations from human brain activity has emerged as a thriving research domain, particularly in the context of brain-computer interfaces. Our study presents an innovative method that employs knowledge distillation to train an EEG classifier and reconstruct images from the ImageNet and THINGS-EEG 2 datasets using only electroencephalography (EEG) data from participants who have viewed the images themselves (i.e. "brain decoding"). We analyzed EEG recordings from 6...
Objective.Brain decoding is a field of computational neuroscience that aims to infer mental states or internal representations of perceptual inputs from measurable brain activity. This study proposes a novel approach to brain decoding that relies on semantic and contextual similarity.Approach.We use several functional magnetic resonance imaging (fMRI) datasets of natural images as stimuli and create a deep learning decoding pipeline inspired by the bottom-up and top-down processes in human...
CONCLUSION: We believe that being able to estimate the uncertainty of a prediction, along with tools that can modulate the behavior of the network to a degree of confidence that the user is informed about (and comfortable with), can represent a crucial step in the direction of user compliance and easier integration of deep learning tools into everyday tasks currently performed by human operators.
Sito creato da An:Ca © 2025 Università di Roma Tor Vergata P.I. 02133971008 – C.F. 80213750583