opensearch:totalResults = 42
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57193860630)
@startPage = 0
@searchTerms = AU-ID(57193860630)
@startPage = 0
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=17&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=17&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
inizio
@_fa = true@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85194387857
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85194387857?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194387857&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85194387857&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2405844024076795
- Precision agriculture for wine production: A machine learning approach to link weather conditions and wine quality; Heliyon; 15 June 2024; DOI: 10.1016/j.heliyon.2024.e31648
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85194387857
dc:identifier = SCOPUS_ID:85194387857
eid = 2-s2.0-85194387857
dc:creator = Dimitri G.M.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 11
prism:pageRange =
prism:coverDate = 2024-06-15
prism:coverDisplayDate = 15 June 2024
prism:doi = 10.1016/j.heliyon.2024.e31648
citedby-count = 1
@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e31648
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:
$ =
value:
$ =
prism:isbn:
@_fa =
$ =
pii = S2405844024076795
dc:identifier = SCOPUS_ID:85194387857
eid = 2-s2.0-85194387857
dc:creator = Dimitri G.M.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 11
prism:pageRange =
prism:coverDate = 2024-06-15
prism:coverDisplayDate = 15 June 2024
prism:doi = 10.1016/j.heliyon.2024.e31648
citedby-count = 1
@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e31648
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:
$ =
value:
$ =
prism:isbn:
@_fa =
$ =
pii = S2405844024076795
inizio
@_fa = true@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85187867825
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85187867825?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85187867825&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85187867825&origin=inward
- A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images; Remote Sensing; March 2024; DOI: 10.3390/rs16050781
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85187867825
dc:identifier = SCOPUS_ID:85187867825
eid = 2-s2.0-85187867825
dc:creator = Abady L.
prism:publicationName = Remote Sensing
prism:issn =
prism:eIssn = 20724292
prism:volume = 16
prism:issueIdentifier = 5
prism:pageRange =
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.3390/rs16050781
citedby-count = 1
@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 781
source-id = 86430
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherfullgold
value:
$ = All Open Access
$ = Gold
prism:isbn:
@_fa =
$ =
pii =
dc:identifier = SCOPUS_ID:85187867825
eid = 2-s2.0-85187867825
dc:creator = Abady L.
prism:publicationName = Remote Sensing
prism:issn =
prism:eIssn = 20724292
prism:volume = 16
prism:issueIdentifier = 5
prism:pageRange =
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.3390/rs16050781
citedby-count = 1
@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 781
source-id = 86430
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherfullgold
value:
$ = All Open Access
$ = Gold
prism:isbn:
@_fa =
$ =
pii =
inizio
@_fa = true@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85184033348
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85184033348?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184033348&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85184033348&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S240584402401435X
- Echo state networks for the recognition of type 1 Brugada syndrome from conventional 12-LEAD ECG; Heliyon; 15 February 2024; DOI: 10.1016/j.heliyon.2024.e25404
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85184033348
dc:identifier = SCOPUS_ID:85184033348
eid = 2-s2.0-85184033348
dc:creator = Vozzi F.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 3
prism:pageRange =
prism:coverDate = 2024-02-15
prism:coverDisplayDate = 15 February 2024
prism:doi = 10.1016/j.heliyon.2024.e25404
citedby-count = 1
@_fa = true
affilname = Istituto di Fisiologia Clinica del CNR
affiliation-city = Pisa
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e25404
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherfullgold
value:
$ = All Open Access
$ = Gold
prism:isbn:
@_fa =
$ =
pii = S240584402401435X
dc:identifier = SCOPUS_ID:85184033348
eid = 2-s2.0-85184033348
dc:creator = Vozzi F.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 3
prism:pageRange =
prism:coverDate = 2024-02-15
prism:coverDisplayDate = 15 February 2024
prism:doi = 10.1016/j.heliyon.2024.e25404
citedby-count = 1
@_fa = true
affilname = Istituto di Fisiologia Clinica del CNR
affiliation-city = Pisa
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e25404
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherfullgold
value:
$ = All Open Access
$ = Gold
prism:isbn:
@_fa =
$ =
pii = S240584402401435X
inizio
@_fa = true@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197273605
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197273605?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197273605&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197273605&origin=inward
- A novel solution for the development of a sentimental analysis chatbot integrating ChatGPT; Personal and Ubiquitous Computing; 2024; DOI: 10.1007/s00779-024-01824-6
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197273605
dc:identifier = SCOPUS_ID:85197273605
eid = 2-s2.0-85197273605
dc:creator = Florindi F.
prism:publicationName = Personal and Ubiquitous Computing
prism:issn = 16174909
prism:eIssn = 16174917
prism:volume =
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 2024
prism:doi = 10.1007/s00779-024-01824-6
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 22315
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii =
dc:identifier = SCOPUS_ID:85197273605
eid = 2-s2.0-85197273605
dc:creator = Florindi F.
prism:publicationName = Personal and Ubiquitous Computing
prism:issn = 16174909
prism:eIssn = 16174917
prism:volume =
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 2024
prism:doi = 10.1007/s00779-024-01824-6
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 22315
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii =
inizio
@_fa = true@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85174834663
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85174834663?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85174834663&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85174834663&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0925231223010706
- Enhancing glomeruli segmentation through cross-species pre-training; Neurocomputing; 1 January 2024; DOI: 10.1016/j.neucom.2023.126947
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85174834663
dc:identifier = SCOPUS_ID:85174834663
eid = 2-s2.0-85174834663
dc:creator = Andreini P.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 563
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 1 January 2024
prism:doi = 10.1016/j.neucom.2023.126947
citedby-count = 0
@_fa =
affilname =
affiliation-city =
affiliation-country =
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 126947
source-id = 24807
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii = S0925231223010706
dc:identifier = SCOPUS_ID:85174834663
eid = 2-s2.0-85174834663
dc:creator = Andreini P.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 563
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 1 January 2024
prism:doi = 10.1016/j.neucom.2023.126947
citedby-count = 0
@_fa =
affilname =
affiliation-city =
affiliation-country =
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 126947
source-id = 24807
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii = S0925231223010706