opensearch:totalResults = 88
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(23004055200)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=63&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0893608023007177

Beyond multilayer perceptrons: Investigating complex topologies in neural networks; Neural Networks; March 2024; DOI: 10.1016/j.neunet.2023.12.012
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180405508
dc:identifier = SCOPUS_ID:85180405508
eid = 2-s2.0-85180405508
dc:creator = Boccato T.
prism:publicationName = Neural Networks
prism:issn = 08936080
prism:eIssn = 18792782
prism:volume = 171
prism:issueIdentifier =
prism:pageRange = 215-228
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.1016/j.neunet.2023.12.012
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38096650
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 24804
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0893608023007177

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0925231223011815

4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs; Neurocomputing; 1 February 2024; DOI: 10.1016/j.neucom.2023.127058
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85178477035
dc:identifier = SCOPUS_ID:85178477035
eid = 2-s2.0-85178477035
dc:creator = Boccato T.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 568
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-02-01
prism:coverDisplayDate = 1 February 2024
prism:doi = 10.1016/j.neucom.2023.127058
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 127058
source-id = 24807
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0925231223011815

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85175349530

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85175349530?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85175349530&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85175349530&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S1935861X23019320

Causal influence of brainstem response to transcutaneous vagus nerve stimulation on cardiovagal outflow; Brain Stimulation; 1 November 2023; DOI: 10.1016/j.brs.2023.10.007
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85175349530
dc:identifier = SCOPUS_ID:85175349530
eid = 2-s2.0-85175349530
dc:creator = Toschi N.
prism:publicationName = Brain Stimulation
prism:issn = 1935861X
prism:eIssn = 18764754
prism:volume = 16
prism:issueIdentifier = 6
prism:pageRange = 1557-1565
prism:coverDate = 2023-11-01
prism:coverDisplayDate = 1 November 2023
prism:doi = 10.1016/j.brs.2023.10.007
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Harvard Medical School
affiliation-city = Boston
affiliation-country = United States

pubmed-id = 37827358
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 11700154204
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = repository

$ = repositoryvor

$ = repositoryam

value:

$ = All Open Access

$ = Green

prism:isbn:

@_fa =
$ =

pii = S1935861X23019320

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85164226027

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85164226027?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164226027&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85164226027&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0262885623001208

VAESim: A probabilistic approach for self-supervised prototype discovery; Image and Vision Computing; September 2023; DOI: 10.1016/j.imavis.2023.104746
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85164226027
dc:identifier = SCOPUS_ID:85164226027
eid = 2-s2.0-85164226027
dc:creator = Ferrante M.
prism:publicationName = Image and Vision Computing
prism:issn = 02628856
prism:eIssn =
prism:volume = 137
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2023-09-01
prism:coverDisplayDate = September 2023
prism:doi = 10.1016/j.imavis.2023.104746
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 104746
source-id = 25549
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryvor

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0262885623001208

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85159714319

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85159714319?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85159714319&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85159714319&origin=inward

Spatiotemporal Learning of Dynamic Positron Emission Tomography Data Improves Diagnostic Accuracy in Breast Cancer; IEEE Transactions on Radiation and Plasma Medical Sciences; 1 July 2023; DOI: 10.1109/TRPMS.2023.3268361
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85159714319
dc:identifier = SCOPUS_ID:85159714319
eid = 2-s2.0-85159714319
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 7
prism:issueIdentifier = 6
prism:pageRange = 630-637
prism:coverDate = 2023-07-01
prism:coverDisplayDate = 1 July 2023
prism:doi = 10.1109/TRPMS.2023.3268361
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =