opensearch:totalResults = 286
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(6602297547)
@startPage = 0
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=261&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0169260724003687
Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging; Computer Methods and Programs in Biomedicine; November 2024; DOI: 10.1016/j.cmpb.2024.108375
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85201677751
dc:identifier = SCOPUS_ID:85201677751
eid = 2-s2.0-85201677751
dc:creator = Ferrante M.
prism:publicationName = Computer Methods and Programs in Biomedicine
prism:issn = 01692607
prism:eIssn = 18727565
prism:volume = 256
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-11-01
prism:coverDisplayDate = November 2024
prism:doi = 10.1016/j.cmpb.2024.108375
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy
pubmed-id = 39180914
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108375
source-id = 23604
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii = S0169260724003687
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85198588569
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85198588569?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85198588569&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85198588569&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2215036624001871
Cortical structure and subcortical volumes in conduct disorder: a coordinated analysis of 15 international cohorts from the ENIGMA-Antisocial Behavior Working Group; The Lancet Psychiatry; August 2024; DOI: 10.1016/S2215-0366(24)00187-1
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85198588569
dc:identifier = SCOPUS_ID:85198588569
eid = 2-s2.0-85198588569
dc:creator = Gao Y.
prism:publicationName = The Lancet Psychiatry
prism:issn = 22150366
prism:eIssn = 22150374
prism:volume = 11
prism:issueIdentifier = 8
prism:pageRange = 620-632
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/S2215-0366(24)00187-1
citedby-count = 1
@_fa = true
affilname = University of Birmingham
affiliation-city = Birmingham
affiliation-country = United Kingdom
pubmed-id = 39025633
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21100356804
openaccess = 1
openaccessFlag = true
value:
$ =
value:
$ =
prism:isbn:
@_fa =
$ =
pii = S2215036624001871
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward
Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model; Journal of Neural Engineering; 1 August 2024; DOI: 10.1088/1741-2552/ad593c
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197363165
dc:identifier = SCOPUS_ID:85197363165
eid = 2-s2.0-85197363165
dc:creator = Ferrante M.
prism:publicationName = Journal of Neural Engineering
prism:issn = 17412560
prism:eIssn = 17412552
prism:volume = 21
prism:issueIdentifier = 4
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = 1 August 2024
prism:doi = 10.1088/1741-2552/ad593c
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy
pubmed-id = 38885689
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 046001
source-id = 130164
openaccess = 1
openaccessFlag = true
value:
$ =
value:
$ =
prism:isbn:
@_fa =
$ =
pii =
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868
Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy
pubmed-id = 38901186
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
$ = repository
$ = repositoryam
value:
$ = All Open Access
$ = Hybrid Gold
$ = Green
prism:isbn:
@_fa =
$ =
pii = S0010482524007868
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85195588987
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85195588987?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85195588987&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85195588987&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0022510X24002260
Unraveling sex differences in Parkinson's disease through explainable machine learning; Journal of the Neurological Sciences; 15 July 2024; DOI: 10.1016/j.jns.2024.123091
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85195588987
dc:identifier = SCOPUS_ID:85195588987
eid = 2-s2.0-85195588987
dc:creator = Angelini G.
prism:publicationName = Journal of the Neurological Sciences
prism:issn = 0022510X
prism:eIssn = 18785883
prism:volume = 462
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-07-15
prism:coverDisplayDate = 15 July 2024
prism:doi = 10.1016/j.jns.2024.123091
citedby-count = 1
@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy
pubmed-id = 38870732
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 123091
source-id = 16820
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii = S0022510X24002260