Dionisia Naddeo

PhD Student

dionisia.naddeo@uniroma2.eu

Biography

Dionisia Naddeo is a Ph.D. student in the National Ph.D. program in Artificial Intelligence for Life Sciences. She holds a Master’s degree in Physics from La Sapienza University of Rome, with a focus on Condensed Matter Physics and Solid State Physics.
Her research interests include neural networks, deep learning, with a particular interest on applying graph neural networks to brain connectivity.

Profiles

LinkedIn

Last 5 articles (Scopus)

opensearch:totalResults = 19
opensearch:startIndex = 0
opensearch:itemsPerPage = 19
@role = request
@searchTerms = AU-ID(57883960400)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0169260724003687

  • Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging; Computer Methods and Programs in Biomedicine; November 2024; DOI: 10.1016/j.cmpb.2024.108375
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85201677751
dc:identifier = SCOPUS_ID:85201677751
eid = 2-s2.0-85201677751
dc:creator = Ferrante M.
prism:publicationName = Computer Methods and Programs in Biomedicine
prism:issn = 01692607
prism:eIssn = 18727565
prism:volume = 256
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-11-01
prism:coverDisplayDate = November 2024
prism:doi = 10.1016/j.cmpb.2024.108375
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 39180914
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108375
source-id = 23604
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0169260724003687

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

  • Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model; Journal of Neural Engineering; 1 August 2024; DOI: 10.1088/1741-2552/ad593c
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197363165
dc:identifier = SCOPUS_ID:85197363165
eid = 2-s2.0-85197363165
dc:creator = Ferrante M.
prism:publicationName = Journal of Neural Engineering
prism:issn = 17412560
prism:eIssn = 17412552
prism:volume = 21
prism:issueIdentifier = 4
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = 1 August 2024
prism:doi = 10.1088/1741-2552/ad593c
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38885689
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 046001
source-id = 130164
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868

  • Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38901186
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0010482524007868

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0893608023007177

  • Beyond multilayer perceptrons: Investigating complex topologies in neural networks; Neural Networks; March 2024; DOI: 10.1016/j.neunet.2023.12.012
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180405508
dc:identifier = SCOPUS_ID:85180405508
eid = 2-s2.0-85180405508
dc:creator = Boccato T.
prism:publicationName = Neural Networks
prism:issn = 08936080
prism:eIssn = 18792782
prism:volume = 171
prism:issueIdentifier =
prism:pageRange = 215-228
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.1016/j.neunet.2023.12.012
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38096650
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 24804
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0893608023007177

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0925231223011815

  • 4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs; Neurocomputing; 1 February 2024; DOI: 10.1016/j.neucom.2023.127058
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85178477035
dc:identifier = SCOPUS_ID:85178477035
eid = 2-s2.0-85178477035
dc:creator = Boccato T.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 568
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-02-01
prism:coverDisplayDate = 1 February 2024
prism:doi = 10.1016/j.neucom.2023.127058
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 127058
source-id = 24807
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0925231223011815

Last 5 articles (PubMed)

Created by An:Ca © 2023 Tor Vergata University P.I. 02133971008 – C.F. 80213750583