Gianfrancesco Angelini

PhD Student

gian.angelini@hotmail.com

Biography

Gianfrancesco Angelini holds a B.E. in Chemical Engineering from the University of Calabria and an M.E. in Neuroengineering and Bio-ICT from the University of Genoa.

He has completed internships and training in artificial intelligence and has worked as a Data Scientist, Data Engineer, DevOps, and Python Software Developer.

In 2022, he joined the National Doctoral Program in AI, focusing on second- and third-generation neural networks and exploring autonomous agents, sentient agents, and knowledge extraction from big data.

Profiles

Created with Fabric.js 4.6.0

Scopus

Last 5 articles (Scopus)

opensearch:totalResults = 1
opensearch:startIndex = 0
opensearch:itemsPerPage = 1
@role = request
@searchTerms = AU-ID(59166811300)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2859166811300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2859166811300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85195588987

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85195588987?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85195588987&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85195588987&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0022510X24002260

Unraveling sex differences in Parkinson's disease through explainable machine learning; Journal of the Neurological Sciences; 15 July 2024; DOI: 10.1016/j.jns.2024.123091
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85195588987
dc:identifier = SCOPUS_ID:85195588987
eid = 2-s2.0-85195588987
dc:creator = Angelini G.
prism:publicationName = Journal of the Neurological Sciences
prism:issn = 0022510X
prism:eIssn = 18785883
prism:volume = 462
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-07-15
prism:coverDisplayDate = 15 July 2024
prism:doi = 10.1016/j.jns.2024.123091
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38870732
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 123091
source-id = 16820
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0022510X24002260

Last 5 articles (PubMed)

  • Unraveling sex differences in Parkinson's disease through explainable machine learning
    on 13 June 2024

    Sex differences affect Parkinson's disease (PD) development and manifestation. Yet, current PD identification and treatments underuse these distinctions. Sex-focused PD literature often prioritizes prevalence rates over feature importance analysis. However, underlying aspects could make a feature significant for predicting PD, despite its score. Interactions between features require consideration, as do distinctions between scoring disparities and actual feature importance. For instance, a...