Giovanna Maria Dimitri

Visiting Students and Alumni

giovanna.dimitri@unisi.it

Biography

Giovanna Maria Dimitri is a researcher in AI at the University of Siena and Guest Lecturer at the University of Cambridge.

She holds a PhD in Computer Science from the University of Cambridge and degrees in Computer and Automation Engineering from the University of Siena.

Her expertise includes multilayer network methodologies for brain data analysis and modeling, predicting drug side effects, and protein function prediction.

Profiles

Created with Fabric.js 4.6.0

Scopus

Google Scholar

Pubmed

Orcid

LinkedIn

Last 5 articles (Scopus)

opensearch:totalResults = 47
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57193860630)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=22&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105001507783

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105001507783?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105001507783&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105001507783&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0920548925000339

  • WeAIR: Wearable Swarm Sensors for Air Quality Monitoring to Foster Citizens’ Awareness of Climate Change; Computer Standards and Interfaces; August 2025; DOI: 10.1016/j.csi.2025.104004
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105001507783
dc:identifier = SCOPUS_ID:105001507783
eid = 2-s2.0-105001507783
dc:creator = Dimitri G.M.
prism:publicationName = Computer Standards and Interfaces
prism:issn = 09205489
prism:eIssn =
prism:volume = 94
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-08-01
prism:coverDisplayDate = August 2025
prism:doi = 10.1016/j.csi.2025.104004
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 104004
source-id = 24303
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0920548925000339

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2949907024000755

  • Mechanotransduction and inflammation: An updated comprehensive representation; Mechanobiology in Medicine; March 2025; DOI: 10.1016/j.mbm.2024.100112
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85212333396
dc:identifier = SCOPUS_ID:85212333396
eid = 2-s2.0-85212333396
dc:creator = Suriyagandhi V.
prism:publicationName = Mechanobiology in Medicine
prism:issn = 29499070
prism:eIssn =
prism:volume = 3
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-03-01
prism:coverDisplayDate = March 2025
prism:doi = 10.1016/j.mbm.2024.100112
citedby-count = 1

@_fa = true
affilname = Istituto Per Le Applicazioni Del Calcolo Mauro Picone, Rome
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 100112
source-id = 21101253551
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S2949907024000755

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105002905981

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105002905981?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105002905981&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105002905981&origin=inward

  • Interoperable Traceability in Supply Chains: A Use Case in Agritech; Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; 2025; DOI: 10.1007/978-3-031-86370-7_3
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105002905981
dc:identifier = SCOPUS_ID:105002905981
eid = 2-s2.0-105002905981
dc:creator = Farina G.
prism:publicationName = Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
prism:issn = 18678211
prism:eIssn = 1867822X
prism:volume = 608 LNICST
prism:issueIdentifier =
prism:pageRange = 29-45
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1007/978-3-031-86370-7_3
citedby-count = 0

@_fa = true
affilname = Niccolò Cusano University
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Book Series
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 21100220348
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9783031863691]

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197273605

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197273605?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197273605&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197273605&origin=inward

  • A novel solution for the development of a sentimental analysis chatbot integrating ChatGPT; Personal and Ubiquitous Computing; December 2024; DOI: 10.1007/s00779-024-01824-6
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197273605
dc:identifier = SCOPUS_ID:85197273605
eid = 2-s2.0-85197273605
dc:creator = Florindi F.
prism:publicationName = Personal and Ubiquitous Computing
prism:issn = 16174909
prism:eIssn = 16174917
prism:volume = 28
prism:issueIdentifier = 6
prism:pageRange = 947-960
prism:coverDate = 2024-12-01
prism:coverDisplayDate = December 2024
prism:doi = 10.1007/s00779-024-01824-6
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 22315
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85194387857

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85194387857?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194387857&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85194387857&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2405844024076795

  • Precision agriculture for wine production: A machine learning approach to link weather conditions and wine quality; Heliyon; 15 June 2024; DOI: 10.1016/j.heliyon.2024.e31648
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85194387857
dc:identifier = SCOPUS_ID:85194387857
eid = 2-s2.0-85194387857
dc:creator = Dimitri G.M.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 11
prism:pageRange =
prism:coverDate = 2024-06-15
prism:coverDisplayDate = 15 June 2024
prism:doi = 10.1016/j.heliyon.2024.e31648
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e31648
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = repository

$ = repositoryvor

value:

$ = All Open Access

$ = Green

prism:isbn:

@_fa =
$ =

pii = S2405844024076795

Last 5 articles (PubMed)