Giovanna Maria Dimitri

Visiting Students and Alumni

giovanna.dimitri@unisi.it

Biography

Giovanna Maria Dimitri is a researcher in AI at the University of Siena and Guest Lecturer at the University of Cambridge.

She holds a PhD in Computer Science from the University of Cambridge and degrees in Computer and Automation Engineering from the University of Siena.

Her expertise includes multilayer network methodologies for brain data analysis and modeling, predicting drug side effects, and protein function prediction.

Profiles

Created with Fabric.js 4.6.0

Scopus

Google Scholar

Pubmed

Orcid

LinkedIn

Last 5 articles (Scopus)

opensearch:totalResults = 52
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57193860630)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=27&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105001507783

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105001507783?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105001507783&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105001507783&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0920548925000339

  • WeAIR: Wearable Swarm Sensors for Air Quality Monitoring to Foster Citizens’ Awareness of Climate Change; Computer Standards and Interfaces; August 2025; DOI: 10.1016/j.csi.2025.104004
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105001507783
dc:identifier = SCOPUS_ID:105001507783
eid = 2-s2.0-105001507783
dc:creator = Dimitri G.M.
prism:publicationName = Computer Standards and Interfaces
prism:issn = 09205489
prism:eIssn =
prism:volume = 94
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-08-01
prism:coverDisplayDate = August 2025
prism:doi = 10.1016/j.csi.2025.104004
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 104004
source-id = 24303
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0920548925000339

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105007729540

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105007729540?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105007729540&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105007729540&origin=inward

  • Interoperable Traceability in Agrifood Supply Chains: Enhancing Transport Systems Through IoT Sensor Data, Blockchain, and DataSpace †; Sensors; June 2025; DOI: 10.3390/s25113419
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105007729540
dc:identifier = SCOPUS_ID:105007729540
eid = 2-s2.0-105007729540
dc:creator = Farina G.
prism:publicationName = Sensors
prism:issn =
prism:eIssn = 14248220
prism:volume = 25
prism:issueIdentifier = 11
prism:pageRange =
prism:coverDate = 2025-06-01
prism:coverDisplayDate = June 2025
prism:doi = 10.3390/s25113419
citedby-count = 0

@_fa = true
affilname = Niccolò Cusano University
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 3419
source-id = 130124
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003690658

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003690658?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003690658&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003690658&origin=inward

  • Analyzing the Impact of Organic Food Consumption on Citizens Health Using Unsupervised Machine Learning; Mathematics; April 2025; DOI: 10.3390/math13081272
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003690658
dc:identifier = SCOPUS_ID:105003690658
eid = 2-s2.0-105003690658
dc:creator = Angiolini G.
prism:publicationName = Mathematics
prism:issn =
prism:eIssn = 22277390
prism:volume = 13
prism:issueIdentifier = 8
prism:pageRange =
prism:coverDate = 2025-04-01
prism:coverDisplayDate = April 2025
prism:doi = 10.3390/math13081272
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1272
source-id = 21100830702
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2949907024000755

  • Mechanotransduction and inflammation: An updated comprehensive representation; Mechanobiology in Medicine; March 2025; DOI: 10.1016/j.mbm.2024.100112
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85212333396
dc:identifier = SCOPUS_ID:85212333396
eid = 2-s2.0-85212333396
dc:creator = Suriyagandhi V.
prism:publicationName = Mechanobiology in Medicine
prism:issn = 29499070
prism:eIssn =
prism:volume = 3
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-03-01
prism:coverDisplayDate = March 2025
prism:doi = 10.1016/j.mbm.2024.100112
citedby-count = 1

@_fa = true
affilname = Istituto Per Le Applicazioni Del Calcolo Mauro Picone, Rome
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 100112
source-id = 21101253551
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S2949907024000755

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105005023525

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105005023525?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105005023525&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105005023525&origin=inward

  • Enhancing Synthetic Generated-Images Detection through Post-Hoc Calibration; Proceedings 2025 IEEE Cvf Winter Conference on Applications of Computer Vision Workshops Wacvw 2025; 2025; DOI: 10.1109/WACVW65960.2025.00087
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105005023525
dc:identifier = SCOPUS_ID:105005023525
eid = 2-s2.0-105005023525
dc:creator = Dimitri G.M.
prism:publicationName = Proceedings 2025 IEEE Cvf Winter Conference on Applications of Computer Vision Workshops Wacvw 2025
prism:issn =
prism:eIssn =
prism:volume =
prism:issueIdentifier =
prism:pageRange = 729-736
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/WACVW65960.2025.00087
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Conference Proceeding
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 21101295029
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9798331536626]

pii =

Last 5 articles (PubMed)