Matteo Ferrante

PhD Student

matteo.ferrante@uniroma2.it

Biography

Matteo Ferrante is a Ph.D. candidate at the National AI Ph.D. – Health and Life Sciences program, studying neuromorphic architectures and generative therapeutic “telepathy.”

He has degrees in Physics and Biomedical Physics from the University of Pavia. His interests lie in artificial intelligence, precision medicine, and neuroscience.

His Ph.D. project focuses on decoding visual stimuli in the brain and generating activation maps using mappings between latent spaces of the brain and artificial neural networks.

Profiles

Created with Fabric.js 4.6.0

Scopus

Orcid

LinkedIn

Google Scholar

Pubmed

Gomp

Last 5 articles (Scopus)

opensearch:totalResults = 22
opensearch:startIndex = 0
opensearch:itemsPerPage = 22
@role = request
@searchTerms = AU-ID(57883960400)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857883960400%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85219197026

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85219197026?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85219197026&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85219197026&origin=inward

  • Transforming Multimodal Models into Action Models for Radiotherapy; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2025; DOI: 10.1007/978-3-031-82007-6_5
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85219197026
dc:identifier = SCOPUS_ID:85219197026
eid = 2-s2.0-85219197026
dc:creator = Ferrante M.
prism:publicationName = Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
prism:issn = 03029743
prism:eIssn = 16113349
prism:volume = 15384 LNCS
prism:issueIdentifier =
prism:pageRange = 41-53
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1007/978-3-031-82007-6_5
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Book Series
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 25674
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9783031820069]

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85215663825

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85215663825?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85215663825&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85215663825&origin=inward

  • Effective Dose Estimation in Computed Tomography by Machine Learning; Tomography; January 2025; DOI: 10.3390/tomography11010002
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85215663825
dc:identifier = SCOPUS_ID:85215663825
eid = 2-s2.0-85215663825
dc:creator = Ferrante M.
prism:publicationName = Tomography
prism:issn = 23791381
prism:eIssn = 2379139X
prism:volume = 11
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = January 2025
prism:doi = 10.3390/tomography11010002
citedby-count = 0

@_fa = true
affilname = Istituto Europeo di Oncologia
affiliation-city = Milan
affiliation-country = Italy

pubmed-id = 39852682
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 2
source-id = 21100904813
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

  • Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism; IEEE Transactions on Radiation and Plasma Medical Sciences; 2025; DOI: 10.1109/TRPMS.2024.3514087
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003208514
dc:identifier = SCOPUS_ID:105003208514
eid = 2-s2.0-105003208514
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 9
prism:issueIdentifier = 4
prism:pageRange = 460-467
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/TRPMS.2024.3514087
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0169260724003687

  • Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging; Computer Methods and Programs in Biomedicine; November 2024; DOI: 10.1016/j.cmpb.2024.108375
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85201677751
dc:identifier = SCOPUS_ID:85201677751
eid = 2-s2.0-85201677751
dc:creator = Ferrante M.
prism:publicationName = Computer Methods and Programs in Biomedicine
prism:issn = 01692607
prism:eIssn = 18727565
prism:volume = 256
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-11-01
prism:coverDisplayDate = November 2024
prism:doi = 10.1016/j.cmpb.2024.108375
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 39180914
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108375
source-id = 23604
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0169260724003687

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

  • Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model; Journal of Neural Engineering; 1 August 2024; DOI: 10.1088/1741-2552/ad593c
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197363165
dc:identifier = SCOPUS_ID:85197363165
eid = 2-s2.0-85197363165
dc:creator = Ferrante M.
prism:publicationName = Journal of Neural Engineering
prism:issn = 17412560
prism:eIssn = 17412552
prism:volume = 21
prism:issueIdentifier = 4
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = 1 August 2024
prism:doi = 10.1088/1741-2552/ad593c
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38885689
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 046001
source-id = 130164
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)