Tommaso Boccato

Dottorando

tommaso.boccato@studenti.unipd.it

Biografia

Tommaso Boccato è uno studente del Dottorato di Ricerca Nazionale in Intelligenza Artificiale presso la Sezione di Fisica Medica di Tor Vergata.

Ha conseguito una laurea in Ingegneria dell’Informazione e una laurea magistrale in ICT, entrambe presso l’Università di Padova.

I suoi interessi includono le reti neurali, il deep learning, la scienza delle reti e la computer vision.

La ricerca attuale di Tommaso si concentra sulle architetture neuromorfiche e sulla “telepatia” generativa terapeutica.

Profili

Created with Fabric.js 4.6.0

Scopus

Pubmed

Orcid

Google Scholar

Ultime 5 pubblicazioni (Scopus)

opensearch:totalResults = 19
opensearch:startIndex = 0
opensearch:itemsPerPage = 19
@role = request
@searchTerms = AU-ID(57892147300)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892147300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892147300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

Evidence for compositionality in fMRI visual representations via Brain Algebra; Communications Biology; December 2025; DOI: 10.1038/s42003-025-08706-4
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105013869712
dc:identifier = SCOPUS_ID:105013869712
eid = 2-s2.0-105013869712
dc:creator = Ferrante M.
prism:publicationName = Communications Biology
prism:issn =
prism:eIssn = 23993642
prism:volume = 8
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s42003-025-08706-4
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1263
source-id = 21100924827
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105010645242

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105010645242?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105010645242&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105010645242&origin=inward

Genetic Motifs as a Blueprint for Mismatch-Tolerant Neuromorphic Computing; Proceedings IEEE International Symposium on Circuits and Systems; 2025; DOI: 10.1109/ISCAS56072.2025.11043755
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105010645242
dc:identifier = SCOPUS_ID:105010645242
eid = 2-s2.0-105010645242
dc:creator = Boccato T.
prism:publicationName = Proceedings IEEE International Symposium on Circuits and Systems
prism:issn = 02714310
prism:eIssn =
prism:volume =
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/ISCAS56072.2025.11043755
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Conference Proceeding
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 56190
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9798350356830]

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism; IEEE Transactions on Radiation and Plasma Medical Sciences; 2025; DOI: 10.1109/TRPMS.2024.3514087
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003208514
dc:identifier = SCOPUS_ID:105003208514
eid = 2-s2.0-105003208514
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 9
prism:issueIdentifier = 4
prism:pageRange = 460-467
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/TRPMS.2024.3514087
citedby-count = 0

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model; Journal of Neural Engineering; 1 August 2024; DOI: 10.1088/1741-2552/ad593c
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197363165
dc:identifier = SCOPUS_ID:85197363165
eid = 2-s2.0-85197363165
dc:creator = Ferrante M.
prism:publicationName = Journal of Neural Engineering
prism:issn = 17412560
prism:eIssn = 17412552
prism:volume = 21
prism:issueIdentifier = 4
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = 1 August 2024
prism:doi = 10.1088/1741-2552/ad593c
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38885689
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 046001
source-id = 130164
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868

Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 5

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38901186
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0010482524007868

Ultime 5 pubblicazioni (PubMed)