Tommaso Boccato

PhD Student

tommaso.boccato@studenti.unipd.it

Biography

Tommaso Boccato is a student in the Italian National Ph.D. Program in Artificial Intelligence at the Tor Vergata Medical Physics Section.

He holds a bachelor’s degree in Information Engineering and a master’s degree in ICT, both from the University of Padova.

His interests include neural networks, deep learning, network science, and computer vision.

Tommaso’s current research focuses on neuromorphic architectures and generative therapeutic “telepathy.”

Profiles

Created with Fabric.js 4.6.0

Scopus

Pubmed

Orcid

Google Scholar

Teaching

A. Y. 2024 - 2025
A. Y. 2023 - 2024

Last 5 articles (Scopus)

opensearch:totalResults = 15
opensearch:startIndex = 0
opensearch:itemsPerPage = 15
@role = request
@searchTerms = AU-ID(57892147300)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892147300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892147300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model; Journal of Neural Engineering; 1 August 2024; DOI: 10.1088/1741-2552/ad593c
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197363165
dc:identifier = SCOPUS_ID:85197363165
eid = 2-s2.0-85197363165
dc:creator = Ferrante M.
prism:publicationName = Journal of Neural Engineering
prism:issn = 17412560
prism:eIssn = 17412552
prism:volume = 21
prism:issueIdentifier = 4
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = 1 August 2024
prism:doi = 10.1088/1741-2552/ad593c
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38885689
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 046001
source-id = 130164
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868

Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0010482524007868

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0893608023007177

Beyond multilayer perceptrons: Investigating complex topologies in neural networks; Neural Networks; March 2024; DOI: 10.1016/j.neunet.2023.12.012
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180405508
dc:identifier = SCOPUS_ID:85180405508
eid = 2-s2.0-85180405508
dc:creator = Boccato T.
prism:publicationName = Neural Networks
prism:issn = 08936080
prism:eIssn = 18792782
prism:volume = 171
prism:issueIdentifier =
prism:pageRange = 215-228
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.1016/j.neunet.2023.12.012
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38096650
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 24804
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0893608023007177

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0925231223011815

4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs; Neurocomputing; 1 February 2024; DOI: 10.1016/j.neucom.2023.127058
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85178477035
dc:identifier = SCOPUS_ID:85178477035
eid = 2-s2.0-85178477035
dc:creator = Boccato T.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 568
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-02-01
prism:coverDisplayDate = 1 February 2024
prism:doi = 10.1016/j.neucom.2023.127058
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 127058
source-id = 24807
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0925231223011815

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85185292874

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85185292874?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185292874&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85185292874&origin=inward

Enabling uncertainty estimation in neural networks through weight perturbation for improved Alzheimer's disease classification; Frontiers in Neuroinformatics; 2024; DOI: 10.3389/fninf.2024.1346723
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85185292874
dc:identifier = SCOPUS_ID:85185292874
eid = 2-s2.0-85185292874
dc:creator = Ferrante M.
prism:publicationName = Frontiers in Neuroinformatics
prism:issn =
prism:eIssn = 16625196
prism:volume = 18
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 2024
prism:doi = 10.3389/fninf.2024.1346723
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1346723
source-id = 19700175167
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)

Created by An:Ca © 2023 Tor Vergata University P.I. 02133971008 – C.F. 80213750583