Giovanna Maria Dimitri

Studenti Visitatori e Alumni

giovanna.dimitri@unisi.it

Biografia

Giovanna Maria Dimitri è post-doc in deep learning per l’istopatologia presso il Dipartimento di Ingegneria dell’Università di Siena, dove insegna anche Business Intelligence.

Ha conseguito il dottorato di ricerca in Computer Science presso l’Università di Cambridge e le lauree in Ingegneria Informatica e dell’Automazione presso l’Università di Siena.

La sua esperienza comprende metodologie di rete multistrato per l’analisi e la modellazione dei dati cerebrali, la previsione degli effetti collaterali dei farmaci e la previsione della funzione delle proteine.

Profili

Created with Fabric.js 4.6.0

Scopus

Google Scholar

Pubmed

Orcid

LinkedIn

Full CV

Ultime 5 pubblicazioni (Scopus)

opensearch:totalResults = 44
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57193860630)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=19&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2949907024000755

  • Mechanotransduction and inflammation: An updated comprehensive representation; Mechanobiology in Medicine; March 2025; DOI: 10.1016/j.mbm.2024.100112
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85212333396
dc:identifier = SCOPUS_ID:85212333396
eid = 2-s2.0-85212333396
dc:creator = Suriyagandhi V.
prism:publicationName = Mechanobiology in Medicine
prism:issn = 29499070
prism:eIssn =
prism:volume = 3
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-03-01
prism:coverDisplayDate = March 2025
prism:doi = 10.1016/j.mbm.2024.100112
citedby-count = 0

@_fa = true
affilname = Istituto Per Le Applicazioni Del Calcolo Mauro Picone, Rome
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 100112
source-id = 21101253551
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S2949907024000755

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85194387857

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85194387857?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194387857&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85194387857&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2405844024076795

  • Precision agriculture for wine production: A machine learning approach to link weather conditions and wine quality; Heliyon; 15 June 2024; DOI: 10.1016/j.heliyon.2024.e31648
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85194387857
dc:identifier = SCOPUS_ID:85194387857
eid = 2-s2.0-85194387857
dc:creator = Dimitri G.M.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 11
prism:pageRange =
prism:coverDate = 2024-06-15
prism:coverDisplayDate = 15 June 2024
prism:doi = 10.1016/j.heliyon.2024.e31648
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e31648
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = repository

$ = repositoryvor

value:

$ = All Open Access

$ = Green

prism:isbn:

@_fa =
$ =

pii = S2405844024076795

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85187867825

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85187867825?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85187867825&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85187867825&origin=inward

  • A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images; Remote Sensing; March 2024; DOI: 10.3390/rs16050781
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85187867825
dc:identifier = SCOPUS_ID:85187867825
eid = 2-s2.0-85187867825
dc:creator = Abady L.
prism:publicationName = Remote Sensing
prism:issn =
prism:eIssn = 20724292
prism:volume = 16
prism:issueIdentifier = 5
prism:pageRange =
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.3390/rs16050781
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 781
source-id = 86430
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryvor

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85184033348

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85184033348?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184033348&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85184033348&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S240584402401435X

  • Echo state networks for the recognition of type 1 Brugada syndrome from conventional 12-LEAD ECG; Heliyon; 15 February 2024; DOI: 10.1016/j.heliyon.2024.e25404
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85184033348
dc:identifier = SCOPUS_ID:85184033348
eid = 2-s2.0-85184033348
dc:creator = Vozzi F.
prism:publicationName = Heliyon
prism:issn = 24058440
prism:eIssn =
prism:volume = 10
prism:issueIdentifier = 3
prism:pageRange =
prism:coverDate = 2024-02-15
prism:coverDisplayDate = 15 February 2024
prism:doi = 10.1016/j.heliyon.2024.e25404
citedby-count = 2

@_fa = true
affilname = Istituto di Fisiologia Clinica del CNR
affiliation-city = Pisa
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = e25404
source-id = 21100411756
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryvor

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S240584402401435X

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85212303238

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85212303238?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85212303238&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85212303238&origin=inward

  • Agricultural Data Space: The METRIQA Platform and a Case Study in the CODECS project; Annals of Computer Science and Intelligence Systems; 2024; DOI: 10.15439/2024F5291
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85212303238
dc:identifier = SCOPUS_ID:85212303238
eid = 2-s2.0-85212303238
dc:creator = Bacco M.
prism:publicationName = Annals of Computer Science and Intelligence Systems
prism:issn =
prism:eIssn = 23005963
prism:volume =
prism:issueIdentifier = 2024
prism:pageRange = 543-548
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 2024
prism:doi = 10.15439/2024F5291
citedby-count = 0

@_fa = true
affilname = Institute of Information Science and Technologies, Pisa
affiliation-city = Pisa
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 21101264290
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

Ultime 5 pubblicazioni (PubMed)

  • Precision agriculture for wine production: A machine learning approach to link weather conditions and wine quality

    The agricultural sector, in particular viticulture, is highly susceptible to variations in the environment, crop conditions, and operational factors. Effectively managing these variables in the field necessitates observation, measurement, and responsive actions. Leveraging new technologies within the realm of precision agriculture, vineyards can enhance their long-term efficiency, productivity, and profitability. In our work we propose a novel analysis of the impact of pedoclimatic factors on...

  • Echo state networks for the recognition of type 1 Brugada syndrome from conventional 12-LEAD ECG

    Artificial Intelligence (AI) applications and Machine Learning (ML) methods have gained much attention in recent years for their ability to automatically detect patterns in data without being explicitly taught rules. Specific features characterise the ECGs of patients with Brugada Syndrome (BrS); however, there is still ambiguity regarding the correct diagnosis of BrS and its differentiation from other pathologies. This work presents an application of Echo State Networks (ESN) in the Recurrent...

  • A machine learning approach to assess Sustainable Development Goals food performances: The Italian case

    In this study, we introduce an innovative application of clustering algorithms to assess and appraise Italy's alignment with respect to the Sustainable Development Goals (SDGs), focusing on those related to climate change and the agrifood market. Specifically, we examined SDG 02: Zero Hunger, SDG 12: Responsible Consumption and Production, and SDG 13: Climate Change, to evaluate Italy's performance in one of its most critical economic sectors. Beyond performance analysis, we administered a...

  • A multi-modal machine learning approach to detect extreme rainfall events in Sicily

    In 2021 almost 300 mm of rain, nearly half of the average annual rainfall, fell near Catania (Sicily Island, Italy). Such events took place in just a few hours, with dramatic consequences on the environmental, social, economic, and health systems of the region. These phenomena are now very common in various countries all around the world: this is the reason why, detecting local extreme rainfall events is a crucial prerequisite for planning actions, able to reverse possibly intensified dramatic...

  • A machine learning approach to analyse and predict the electric cars scenario: The Italian case

    The automotive market is experiencing, in recent years, a period of deep transformation. Increasingly stricter rules on pollutant emissions and greater awareness of air quality by consumers are pushing the transport sector towards sustainable mobility. In this historical context, electric cars have been considered the most valid alternative to traditional internal combustion engine cars, thanks to their low polluting potential, with high growth prospects in the coming years. This growth is an...

Sito creato da An:Ca © 2023 Università di Roma Tor Vergata P.I. 02133971008 – C.F. 80213750583