opensearch:totalResults = 53
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57193860630)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=28&count=25&query=AU-ID%2857193860630%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105001507783

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105001507783?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105001507783&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105001507783&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0920548925000339

  • WeAIR: Wearable Swarm Sensors for Air Quality Monitoring to Foster Citizens’ Awareness of Climate Change; Computer Standards and Interfaces; August 2025; DOI: 10.1016/j.csi.2025.104004
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105001507783
dc:identifier = SCOPUS_ID:105001507783
eid = 2-s2.0-105001507783
dc:creator = Dimitri G.M.
prism:publicationName = Computer Standards and Interfaces
prism:issn = 09205489
prism:eIssn =
prism:volume = 94
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-08-01
prism:coverDisplayDate = August 2025
prism:doi = 10.1016/j.csi.2025.104004
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 104004
source-id = 24303
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Green

prism:isbn:

@_fa =
$ =

pii = S0920548925000339

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105007729540

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105007729540?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105007729540&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105007729540&origin=inward

  • Interoperable Traceability in Agrifood Supply Chains: Enhancing Transport Systems Through IoT Sensor Data, Blockchain, and DataSpace †; Sensors; June 2025; DOI: 10.3390/s25113419
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105007729540
dc:identifier = SCOPUS_ID:105007729540
eid = 2-s2.0-105007729540
dc:creator = Farina G.
prism:publicationName = Sensors
prism:issn =
prism:eIssn = 14248220
prism:volume = 25
prism:issueIdentifier = 11
prism:pageRange =
prism:coverDate = 2025-06-01
prism:coverDisplayDate = June 2025
prism:doi = 10.3390/s25113419
citedby-count = 0

@_fa = true
affilname = Niccolò Cusano University
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 3419
source-id = 130124
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryvor

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003690658

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003690658?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003690658&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003690658&origin=inward

  • Analyzing the Impact of Organic Food Consumption on Citizens Health Using Unsupervised Machine Learning; Mathematics; April 2025; DOI: 10.3390/math13081272
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003690658
dc:identifier = SCOPUS_ID:105003690658
eid = 2-s2.0-105003690658
dc:creator = Angiolini G.
prism:publicationName = Mathematics
prism:issn =
prism:eIssn = 22277390
prism:volume = 13
prism:issueIdentifier = 8
prism:pageRange =
prism:coverDate = 2025-04-01
prism:coverDisplayDate = April 2025
prism:doi = 10.3390/math13081272
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1272
source-id = 21100830702
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85212333396?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85212333396&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S2949907024000755

  • Mechanotransduction and inflammation: An updated comprehensive representation; Mechanobiology in Medicine; March 2025; DOI: 10.1016/j.mbm.2024.100112
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85212333396
dc:identifier = SCOPUS_ID:85212333396
eid = 2-s2.0-85212333396
dc:creator = Suriyagandhi V.
prism:publicationName = Mechanobiology in Medicine
prism:issn = 29499070
prism:eIssn =
prism:volume = 3
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-03-01
prism:coverDisplayDate = March 2025
prism:doi = 10.1016/j.mbm.2024.100112
citedby-count = 2

@_fa = true
affilname = Istituto Per Le Applicazioni Del Calcolo Mauro Picone, Rome
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 100112
source-id = 21101253551
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii = S2949907024000755

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105012225924

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105012225924?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105012225924&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105012225924&origin=inward

  • Beyond Pixels: Sentiment-Based Assessment of Image Inpainting Techniques with Application to Forgery Removal; International Conference on Digital Signal Processing DSP; 2025; DOI: 10.1109/DSP65409.2025.11074910
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105012225924
dc:identifier = SCOPUS_ID:105012225924
eid = 2-s2.0-105012225924
dc:creator = Blanchini M.
prism:publicationName = International Conference on Digital Signal Processing DSP
prism:issn = 15461874
prism:eIssn = 21653577
prism:volume =
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/DSP65409.2025.11074910
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Siena
affiliation-city = Siena
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Conference Proceeding
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 21101317031
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9798331512132]

pii =