Marianna Inglese

Assistant Professor

Macro-area: Fisica Applicata, didattica e storia della Fisica
SSD: FIS/07

marianna.inglese@uniroma2.it

Biography

Marianna Inglese, an Assistant Professor of Medical Physics at UNITOV, earned her master’s in Biomedical Engineering from the University of Rome “La Sapienza” in 2014. Her thesis focused on PET image correction for hybrid PET/MRI platforms, and she completed it at the University of Western Ontario’s Lawson Health Research Institute.

She obtained her PhD in Bioengineering from the University of Rome “La Sapienza” in 2019, researching advanced perfusion quantification methods for dynamic PET and MRI data.

Marianna is an honorary research fellow at Imperial College London, where she previously worked on quantifying dynamic PET data and applying machine learning for radiomic studies.

She received several awards, including a “Magna cum laude” from ISMRM and second-place awards at the ISMRM Perfusion Workshop and PET/MRI Workshop. She is a member of AIIC, GNB, the British and Irish Chapter of ISMRM, ISMRM, BNOS, and AISUK.

Profiles

Created with Fabric.js 4.6.0

Scopus

Orcid

LinkedIn

Google Scholar

Pubmed

Insegnamenti

Gomp

Last 5 articles (Scopus)

opensearch:totalResults = 22
opensearch:startIndex = 0
opensearch:itemsPerPage = 22
@role = request
@searchTerms = AU-ID(57892108100)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0169260724003687

Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging; Computer Methods and Programs in Biomedicine; November 2024; DOI: 10.1016/j.cmpb.2024.108375
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85201677751
dc:identifier = SCOPUS_ID:85201677751
eid = 2-s2.0-85201677751
dc:creator = Ferrante M.
prism:publicationName = Computer Methods and Programs in Biomedicine
prism:issn = 01692607
prism:eIssn = 18727565
prism:volume = 256
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-11-01
prism:coverDisplayDate = November 2024
prism:doi = 10.1016/j.cmpb.2024.108375
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 39180914
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108375
source-id = 23604
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0169260724003687

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180171278

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180171278?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180171278&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180171278&origin=inward

The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI–Dynamic Contrast-Enhanced challenge; Magnetic Resonance in Medicine; May 2024; DOI: 10.1002/mrm.29909
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180171278
dc:identifier = SCOPUS_ID:85180171278
eid = 2-s2.0-85180171278
dc:creator = Shalom E.S.
prism:publicationName = Magnetic Resonance in Medicine
prism:issn = 07403194
prism:eIssn = 15222594
prism:volume = 91
prism:issueIdentifier = 5
prism:pageRange = 1803-1821
prism:coverDate = 2024-05-01
prism:coverDisplayDate = May 2024
prism:doi = 10.1002/mrm.29909
citedby-count = 1

@_fa = true
affilname = University of Leeds
affiliation-city = Leeds
affiliation-country = United Kingdom

@_fa = true
affilname = The University of Sheffield
affiliation-city = Sheffield
affiliation-country = United Kingdom

pubmed-id = 38115695
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 17267
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85175817113

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85175817113?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85175817113&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85175817113&origin=inward

Radiomics-based decision support tool assists radiologists in small lung nodule classification and improves lung cancer early diagnosis; British Journal of Cancer; 7 December 2023; DOI: 10.1038/s41416-023-02480-y
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85175817113
dc:identifier = SCOPUS_ID:85175817113
eid = 2-s2.0-85175817113
dc:creator = Hunter B.
prism:publicationName = British Journal of Cancer
prism:issn = 00070920
prism:eIssn = 15321827
prism:volume = 129
prism:issueIdentifier = 12
prism:pageRange = 1949-1955
prism:coverDate = 2023-12-07
prism:coverDisplayDate = 7 December 2023
prism:doi = 10.1038/s41416-023-02480-y
citedby-count = 4

@_fa = true
affilname = Imperial College Faculty of Medicine
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id = 37932513
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 28770
openaccess = 0
openaccessFlag = false
value:

$ = all

$ = repository

$ = repositoryvor

value:

$ = All Open Access

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180669524

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180669524?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180669524&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180669524&origin=inward

Bench to Bedside Development of [<sup>18</sup>F]Fluoromethyl-(1,2-<sup>2</sup>H<inf>4</inf>)choline ([<sup>18</sup>F]D4-FCH); Molecules; December 2023; DOI: 10.3390/molecules28248018
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180669524
dc:identifier = SCOPUS_ID:85180669524
eid = 2-s2.0-85180669524
dc:creator = Challapalli A.
prism:publicationName = Molecules
prism:issn =
prism:eIssn = 14203049
prism:volume = 28
prism:issueIdentifier = 24
prism:pageRange =
prism:coverDate = 2023-12-01
prism:coverDisplayDate = December 2023
prism:doi = 10.3390/molecules28248018
citedby-count = 1

@_fa = true
affilname = Bristol Haematology and Oncology Centre
affiliation-city = Bristol
affiliation-country = United Kingdom

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id = 38138508
prism:aggregationType = Journal
subtype = re
subtypeDescription = Review
article-number = 8018
source-id = 26370
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85165637624

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85165637624?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85165637624&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85165637624&origin=inward

Feasibility of [<sup>18</sup>F]fluoropivalate hybrid PET/MRI for imaging lower and higher grade glioma: a prospective first-in-patient pilot study; European Journal of Nuclear Medicine and Molecular Imaging; November 2023; DOI: 10.1007/s00259-023-06330-0
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85165637624
dc:identifier = SCOPUS_ID:85165637624
eid = 2-s2.0-85165637624
dc:creator = Islam S.
prism:publicationName = European Journal of Nuclear Medicine and Molecular Imaging
prism:issn = 16197070
prism:eIssn = 16197089
prism:volume = 50
prism:issueIdentifier = 13
prism:pageRange = 3982-3995
prism:coverDate = 2023-11-01
prism:coverDisplayDate = November 2023
prism:doi = 10.1007/s00259-023-06330-0
citedby-count = 5

@_fa = true
affilname = Hammersmith Hospital
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id = 37490079
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 16676
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)

Created by An:Ca © 2023 Tor Vergata University P.I. 02133971008 – C.F. 80213750583