foto-PhD-1

Stefano Bargione

Dottorando

s.bargione@campus.unimib.it

Biografia

Stefano Bargione è uno studente di dottorato nel National Ph.D. in AI, Health and Life Sciences.

Ha conseguito una laurea in Scienze e tecniche psicologiche presso l’Università LUMSA e un master in Scienze psicologiche sperimentali applicate presso l’Università di Milano-Bicocca.

Stefano ha esperienza di stage di ricerca e mira a padroneggiare le tecniche di AI per la progettazione di modelli computazionali del cervello e del comportamento.

I suoi interessi di ricerca includono approcci di modellazione computazionale e tecnologie all’avanguardia (ad esempio, VR, AR, XR) per la progettazione di scenari personalizzati simulati al computer basati sulle risposte specifiche dei soggetti alle esperienze multisensoriali.

Profili

Pubmed

LinkedIn

Created with Fabric.js 4.6.0

Scopus

Google Scholar

Ultimi 5 articoli (Scopus)

opensearch:totalResults = 2
opensearch:startIndex = 0
opensearch:itemsPerPage = 2
@role = request
@searchTerms = AU-ID(57859799600)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857859799600%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857859799600%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868

Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0010482524007868

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85185555284

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85185555284?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185555284&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85185555284&origin=inward

Linking Brain Signals to Visual Concepts: CLIP based knowledge transfer for EEG Decoding and visual stimuli reconstruction; 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, IEEECONF 2023; 2023; DOI: 10.1109/IEEECONF58974.2023.10404307
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85185555284
dc:identifier = SCOPUS_ID:85185555284
eid = 2-s2.0-85185555284
dc:creator = Ferrante M.
prism:publicationName = 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, IEEECONF 2023
prism:issn =
prism:eIssn =
prism:volume =
prism:issueIdentifier =
prism:pageRange = 31-32
prism:coverDate = 2023-01-01
prism:coverDisplayDate = 2023
prism:doi = 10.1109/IEEECONF58974.2023.10404307
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Universiteit Twente
affiliation-city = Enschede
affiliation-country = Netherlands

pubmed-id =
prism:aggregationType = Conference Proceeding
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 21101202022
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa = true
$ = [9798350383386]

pii =

Ultimi 5 articoli (PubMed)

  • Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models
    on 20 Giugno 2024

    Decoding visual representations from human brain activity has emerged as a thriving research domain, particularly in the context of brain-computer interfaces. Our study presents an innovative method that employs knowledge distillation to train an EEG classifier and reconstruct images from the ImageNet and THINGS-EEG 2 datasets using only electroencephalography (EEG) data from participants who have viewed the images themselves (i.e. "brain decoding"). We analyzed EEG recordings from 6...

Sito creato da An:Ca © 2023 Università di Roma Tor Vergata P.I. 02133971008 – C.F. 80213750583