opensearch:totalResults = 2
opensearch:startIndex = 0
opensearch:itemsPerPage = 2
@role = request
@searchTerms = AU-ID(57859799600)
@startPage = 0
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857859799600%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857859799600%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward
@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868
Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy
pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:
$ = all
$ = publisherhybridgold
value:
$ = All Open Access
$ = Hybrid Gold
prism:isbn:
@_fa =
$ =
pii = S0010482524007868
inizio
@_fa = true
@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85185555284
@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85185555284?field=author,affiliation
@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185555284&origin=inward
@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85185555284&origin=inward
Linking Brain Signals to Visual Concepts: CLIP based knowledge transfer for EEG Decoding and visual stimuli reconstruction; 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, IEEECONF 2023; 2023; DOI: 10.1109/IEEECONF58974.2023.10404307
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85185555284
dc:identifier = SCOPUS_ID:85185555284
eid = 2-s2.0-85185555284
dc:creator = Ferrante M.
prism:publicationName = 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, IEEECONF 2023
prism:issn =
prism:eIssn =
prism:volume =
prism:issueIdentifier =
prism:pageRange = 31-32
prism:coverDate = 2023-01-01
prism:coverDisplayDate = 2023
prism:doi = 10.1109/IEEECONF58974.2023.10404307
citedby-count = 0
@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy
@_fa = true
affilname = Universiteit Twente
affiliation-city = Enschede
affiliation-country = Netherlands
pubmed-id =
prism:aggregationType = Conference Proceeding
subtype = cp
subtypeDescription = Conference Paper
article-number =
source-id = 21101202022
openaccess = 0
openaccessFlag = false
value:
$ =
value:
$ =
prism:isbn:
@_fa = true
$ = [9798350383386]
pii =