Tommaso Boccato

Dottorando

tommaso.boccato@studenti.unipd.it

Biografia

Tommaso Boccato è uno studente del Dottorato di Ricerca Nazionale in Intelligenza Artificiale presso la Sezione di Fisica Medica di Tor Vergata.

Ha conseguito una laurea in Ingegneria dell’Informazione e una laurea magistrale in ICT, entrambe presso l’Università di Padova.

I suoi interessi includono le reti neurali, il deep learning, la scienza delle reti e la computer vision.

La ricerca attuale di Tommaso si concentra sulle architetture neuromorfiche e sulla “telepatia” generativa terapeutica.

Profili

Created with Fabric.js 4.6.0

Scopus

Pubmed

Orcid

Google Scholar

Ultime 5 pubblicazioni (Scopus)

opensearch:totalResults = 15
opensearch:startIndex = 0
opensearch:itemsPerPage = 15
@role = request
@searchTerms = AU-ID(57892147300)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892147300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892147300%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85197363165?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85197363165&origin=inward

Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model; Journal of Neural Engineering; 1 August 2024; DOI: 10.1088/1741-2552/ad593c
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85197363165
dc:identifier = SCOPUS_ID:85197363165
eid = 2-s2.0-85197363165
dc:creator = Ferrante M.
prism:publicationName = Journal of Neural Engineering
prism:issn = 17412560
prism:eIssn = 17412552
prism:volume = 21
prism:issueIdentifier = 4
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = 1 August 2024
prism:doi = 10.1088/1741-2552/ad593c
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38885689
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 046001
source-id = 130164
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85196144814?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85196144814&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0010482524007868

Decoding visual brain representations from electroencephalography through knowledge distillation and latent diffusion models; Computers in Biology and Medicine; August 2024; DOI: 10.1016/j.compbiomed.2024.108701
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85196144814
dc:identifier = SCOPUS_ID:85196144814
eid = 2-s2.0-85196144814
dc:creator = Ferrante M.
prism:publicationName = Computers in Biology and Medicine
prism:issn = 00104825
prism:eIssn = 18790534
prism:volume = 178
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-08-01
prism:coverDisplayDate = August 2024
prism:doi = 10.1016/j.compbiomed.2024.108701
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108701
source-id = 17957
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0010482524007868

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0893608023007177

Beyond multilayer perceptrons: Investigating complex topologies in neural networks; Neural Networks; March 2024; DOI: 10.1016/j.neunet.2023.12.012
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180405508
dc:identifier = SCOPUS_ID:85180405508
eid = 2-s2.0-85180405508
dc:creator = Boccato T.
prism:publicationName = Neural Networks
prism:issn = 08936080
prism:eIssn = 18792782
prism:volume = 171
prism:issueIdentifier =
prism:pageRange = 215-228
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.1016/j.neunet.2023.12.012
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38096650
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 24804
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0893608023007177

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0925231223011815

4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs; Neurocomputing; 1 February 2024; DOI: 10.1016/j.neucom.2023.127058
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85178477035
dc:identifier = SCOPUS_ID:85178477035
eid = 2-s2.0-85178477035
dc:creator = Boccato T.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 568
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-02-01
prism:coverDisplayDate = 1 February 2024
prism:doi = 10.1016/j.neucom.2023.127058
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 127058
source-id = 24807
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0925231223011815

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85185292874

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85185292874?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185292874&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85185292874&origin=inward

Enabling uncertainty estimation in neural networks through weight perturbation for improved Alzheimer's disease classification; Frontiers in Neuroinformatics; 2024; DOI: 10.3389/fninf.2024.1346723
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85185292874
dc:identifier = SCOPUS_ID:85185292874
eid = 2-s2.0-85185292874
dc:creator = Ferrante M.
prism:publicationName = Frontiers in Neuroinformatics
prism:issn =
prism:eIssn = 16625196
prism:volume = 18
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-01-01
prism:coverDisplayDate = 2024
prism:doi = 10.3389/fninf.2024.1346723
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1346723
source-id = 19700175167
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

Ultime 5 pubblicazioni (PubMed)

Sito creato da An:Ca © 2023 Università di Roma Tor Vergata P.I. 02133971008 – C.F. 80213750583