Andrea Duggento

Associate Professor

Macro-area: Fisica Applicata, didattica e storia della Fisica
SSD: FIS/07

duggento@med.uniroma2.it

Biography

Andrea Duggento, Associate Professor of Medical Physics at UNITOV, holds bachelor’s and master’s degrees in Theoretical Physics from the University of Pisa and a PhD in Physics from Lancaster University.

With a Medical Physics Degree from the University of Rome “Tor Vergata”, Andrea’s research focuses on nonlinear dynamical systems, statistical analysis, and information processes in biological networks.

His recent work explores directed functional networks in the brain, with publications in prestigious journals such as Physical Review Letters and Philosophical Transactions of the Royal Society.

Profiles

Created with Fabric.js 4.6.0

Scopus

Orcid

Google Scholar

Pubmed

List of Courses

Gomp

Last 5 articles (Scopus)

opensearch:totalResults = 88
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(23004055200)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=63&count=25&query=AU-ID%2823004055200%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180405508?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180405508&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0893608023007177

Beyond multilayer perceptrons: Investigating complex topologies in neural networks; Neural Networks; March 2024; DOI: 10.1016/j.neunet.2023.12.012
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180405508
dc:identifier = SCOPUS_ID:85180405508
eid = 2-s2.0-85180405508
dc:creator = Boccato T.
prism:publicationName = Neural Networks
prism:issn = 08936080
prism:eIssn = 18792782
prism:volume = 171
prism:issueIdentifier =
prism:pageRange = 215-228
prism:coverDate = 2024-03-01
prism:coverDisplayDate = March 2024
prism:doi = 10.1016/j.neunet.2023.12.012
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 38096650
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 24804
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0893608023007177

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85178477035?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85178477035&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0925231223011815

4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs; Neurocomputing; 1 February 2024; DOI: 10.1016/j.neucom.2023.127058
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85178477035
dc:identifier = SCOPUS_ID:85178477035
eid = 2-s2.0-85178477035
dc:creator = Boccato T.
prism:publicationName = Neurocomputing
prism:issn = 09252312
prism:eIssn = 18728286
prism:volume = 568
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-02-01
prism:coverDisplayDate = 1 February 2024
prism:doi = 10.1016/j.neucom.2023.127058
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 127058
source-id = 24807
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0925231223011815

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85175349530

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85175349530?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85175349530&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85175349530&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S1935861X23019320

Causal influence of brainstem response to transcutaneous vagus nerve stimulation on cardiovagal outflow; Brain Stimulation; 1 November 2023; DOI: 10.1016/j.brs.2023.10.007
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85175349530
dc:identifier = SCOPUS_ID:85175349530
eid = 2-s2.0-85175349530
dc:creator = Toschi N.
prism:publicationName = Brain Stimulation
prism:issn = 1935861X
prism:eIssn = 18764754
prism:volume = 16
prism:issueIdentifier = 6
prism:pageRange = 1557-1565
prism:coverDate = 2023-11-01
prism:coverDisplayDate = 1 November 2023
prism:doi = 10.1016/j.brs.2023.10.007
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Harvard Medical School
affiliation-city = Boston
affiliation-country = United States

pubmed-id = 37827358
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 11700154204
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Green

prism:isbn:

@_fa =
$ =

pii = S1935861X23019320

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85164226027

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85164226027?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164226027&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85164226027&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0262885623001208

VAESim: A probabilistic approach for self-supervised prototype discovery; Image and Vision Computing; September 2023; DOI: 10.1016/j.imavis.2023.104746
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85164226027
dc:identifier = SCOPUS_ID:85164226027
eid = 2-s2.0-85164226027
dc:creator = Ferrante M.
prism:publicationName = Image and Vision Computing
prism:issn = 02628856
prism:eIssn =
prism:volume = 137
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2023-09-01
prism:coverDisplayDate = September 2023
prism:doi = 10.1016/j.imavis.2023.104746
citedby-count = 2

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 104746
source-id = 25549
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0262885623001208

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85159714319

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85159714319?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85159714319&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85159714319&origin=inward

Spatiotemporal Learning of Dynamic Positron Emission Tomography Data Improves Diagnostic Accuracy in Breast Cancer; IEEE Transactions on Radiation and Plasma Medical Sciences; 1 July 2023; DOI: 10.1109/TRPMS.2023.3268361
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85159714319
dc:identifier = SCOPUS_ID:85159714319
eid = 2-s2.0-85159714319
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 7
prism:issueIdentifier = 6
prism:pageRange = 630-637
prism:coverDate = 2023-07-01
prism:coverDisplayDate = 1 July 2023
prism:doi = 10.1109/TRPMS.2023.3268361
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)

Created by An:Ca © 2023 Tor Vergata University P.I. 02133971008 – C.F. 80213750583