Marianna Inglese

Assistant Professor

PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali

marianna.inglese@uniroma2.it

Biography

Marianna Inglese, an Assistant Professor of Medical Physics at UNITOV, earned her master’s in Biomedical Engineering from the University of Rome “La Sapienza” in 2014. Her thesis focused on PET image correction for hybrid PET/MRI platforms, and she completed it at the University of Western Ontario’s Lawson Health Research Institute.

She obtained her PhD in Bioengineering from the University of Rome “La Sapienza” in 2019, researching advanced perfusion quantification methods for dynamic PET and MRI data.

Marianna is an honorary research fellow at Imperial College London, where she previously worked on quantifying dynamic PET data and applying machine learning for radiomic studies.

She received several awards, including a “Magna cum laude” from ISMRM and second-place awards at the ISMRM Perfusion Workshop and PET/MRI Workshop. She is a member of AIIC, GNB, the British and Irish Chapter of ISMRM, ISMRM, BNOS, and AISUK.

Profiles

Created with Fabric.js 4.6.0

Scopus

Orcid

LinkedIn

Google Scholar

Pubmed

Insegnamenti

Gomp

Last 5 articles (Scopus)

opensearch:totalResults = 27
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57892108100)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=2&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105007314992

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105007314992?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105007314992&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105007314992&origin=inward

Glucose metabolism in hyper-connected regions predicts neurodegeneration and speed of conversion in Alzheimer’s disease; European Journal of Nuclear Medicine and Molecular Imaging; October 2025; DOI: 10.1007/s00259-025-07379-9
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105007314992
dc:identifier = SCOPUS_ID:105007314992
eid = 2-s2.0-105007314992
dc:creator = Galli A.
prism:publicationName = European Journal of Nuclear Medicine and Molecular Imaging
prism:issn = 16197070
prism:eIssn = 16197089
prism:volume = 52
prism:issueIdentifier = 12
prism:pageRange = 4639-4651
prism:coverDate = 2025-10-01
prism:coverDisplayDate = October 2025
prism:doi = 10.1007/s00259-025-07379-9
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Brescia
affiliation-city = Brescia
affiliation-country = Italy

pubmed-id = 40471318
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 16676
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003921738

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003921738?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003921738&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003921738&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0009926025001266

Radiomics across modalities: a comprehensive review of neurodegenerative diseases; Clinical Radiology; June 2025; DOI: 10.1016/j.crad.2025.106921
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003921738
dc:identifier = SCOPUS_ID:105003921738
eid = 2-s2.0-105003921738
dc:creator = Inglese M.
prism:publicationName = Clinical Radiology
prism:issn = 00099260
prism:eIssn = 1365229X
prism:volume = 85
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-06-01
prism:coverDisplayDate = June 2025
prism:doi = 10.1016/j.crad.2025.106921
citedby-count = 2

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 40305877
prism:aggregationType = Journal
subtype = re
subtypeDescription = Review
article-number = 106921
source-id = 16616
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0009926025001266

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85218008262

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85218008262?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218008262&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85218008262&origin=inward

A hybrid [18F]fluoropivalate PET-multiparametric MRI to detect and characterise brain tumour metastases based on a permissive environment for monocarboxylate transport; European Journal of Nuclear Medicine and Molecular Imaging; June 2025; DOI: 10.1007/s00259-025-07118-0
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85218008262
dc:identifier = SCOPUS_ID:85218008262
eid = 2-s2.0-85218008262
dc:creator = Islam S.
prism:publicationName = European Journal of Nuclear Medicine and Molecular Imaging
prism:issn = 16197070
prism:eIssn = 16197089
prism:volume = 52
prism:issueIdentifier = 7
prism:pageRange = 2290-2306
prism:coverDate = 2025-06-01
prism:coverDisplayDate = June 2025
prism:doi = 10.1007/s00259-025-07118-0
citedby-count = 0

@_fa = true
affilname = Imperial College Faculty of Medicine
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id = 39915301
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 16676
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Hybrid Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105016789980

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105016789980?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105016789980&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105016789980&origin=inward

Generation of synthetic TSPO PET maps from structural MRI images; Frontiers in Neuroinformatics; 2025; DOI: 10.3389/fninf.2025.1633273
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105016789980
dc:identifier = SCOPUS_ID:105016789980
eid = 2-s2.0-105016789980
dc:creator = Ferrante M.
prism:publicationName = Frontiers in Neuroinformatics
prism:issn =
prism:eIssn = 16625196
prism:volume = 19
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.3389/fninf.2025.1633273
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1633273
source-id = 19700175167
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism; IEEE Transactions on Radiation and Plasma Medical Sciences; 2025; DOI: 10.1109/TRPMS.2024.3514087
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003208514
dc:identifier = SCOPUS_ID:105003208514
eid = 2-s2.0-105003208514
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 9
prism:issueIdentifier = 4
prism:pageRange = 460-467
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/TRPMS.2024.3514087
citedby-count = 0

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)