Marianna Inglese

Assistant Professor

PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali

marianna.inglese@uniroma2.it

Biography

Marianna Inglese, an Assistant Professor of Medical Physics at UNITOV, earned her master’s in Biomedical Engineering from the University of Rome “La Sapienza” in 2014. Her thesis focused on PET image correction for hybrid PET/MRI platforms, and she completed it at the University of Western Ontario’s Lawson Health Research Institute.

She obtained her PhD in Bioengineering from the University of Rome “La Sapienza” in 2019, researching advanced perfusion quantification methods for dynamic PET and MRI data.

Marianna is an honorary research fellow at Imperial College London, where she previously worked on quantifying dynamic PET data and applying machine learning for radiomic studies.

She received several awards, including a “Magna cum laude” from ISMRM and second-place awards at the ISMRM Perfusion Workshop and PET/MRI Workshop. She is a member of AIIC, GNB, the British and Irish Chapter of ISMRM, ISMRM, BNOS, and AISUK.

Profiles

Created with Fabric.js 4.6.0

Scopus

Orcid

LinkedIn

Google Scholar

Pubmed

Insegnamenti

Gomp

Last 5 articles (Scopus)

opensearch:totalResults = 25
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(57892108100)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%2857892108100%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003921738

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003921738?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003921738&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003921738&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0009926025001266

Radiomics across modalities: a comprehensive review of neurodegenerative diseases; Clinical Radiology; June 2025; DOI: 10.1016/j.crad.2025.106921
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003921738
dc:identifier = SCOPUS_ID:105003921738
eid = 2-s2.0-105003921738
dc:creator = Inglese M.
prism:publicationName = Clinical Radiology
prism:issn = 00099260
prism:eIssn = 1365229X
prism:volume = 85
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-06-01
prism:coverDisplayDate = June 2025
prism:doi = 10.1016/j.crad.2025.106921
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = re
subtypeDescription = Review
article-number = 106921
source-id = 16616
openaccess = 1
openaccessFlag = true
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii = S0009926025001266

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85218008262

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85218008262?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218008262&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85218008262&origin=inward

A hybrid [<sup>18</sup>F]fluoropivalate PET-multiparametric MRI to detect and characterise brain tumour metastases based on a permissive environment for monocarboxylate transport; European Journal of Nuclear Medicine and Molecular Imaging; 2025; DOI: 10.1007/s00259-025-07118-0
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85218008262
dc:identifier = SCOPUS_ID:85218008262
eid = 2-s2.0-85218008262
dc:creator = Islam S.
prism:publicationName = European Journal of Nuclear Medicine and Molecular Imaging
prism:issn = 16197070
prism:eIssn = 16197089
prism:volume =
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1007/s00259-025-07118-0
citedby-count = 0

@_fa = true
affilname = Imperial College Faculty of Medicine
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 16676
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105003208514?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105003208514&origin=inward

Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism; IEEE Transactions on Radiation and Plasma Medical Sciences; 2025; DOI: 10.1109/TRPMS.2024.3514087
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105003208514
dc:identifier = SCOPUS_ID:105003208514
eid = 2-s2.0-105003208514
dc:creator = Inglese M.
prism:publicationName = IEEE Transactions on Radiation and Plasma Medical Sciences
prism:issn =
prism:eIssn = 24697311
prism:volume = 9
prism:issueIdentifier = 4
prism:pageRange = 460-467
prism:coverDate = 2025-01-01
prism:coverDisplayDate = 2025
prism:doi = 10.1109/TRPMS.2024.3514087
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

@_fa = true
affilname = Imperial College London
affiliation-city = London
affiliation-country = United Kingdom

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 21101055810
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85201677751?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85201677751&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S0169260724003687

Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging; Computer Methods and Programs in Biomedicine; November 2024; DOI: 10.1016/j.cmpb.2024.108375
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85201677751
dc:identifier = SCOPUS_ID:85201677751
eid = 2-s2.0-85201677751
dc:creator = Ferrante M.
prism:publicationName = Computer Methods and Programs in Biomedicine
prism:issn = 01692607
prism:eIssn = 18727565
prism:volume = 256
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2024-11-01
prism:coverDisplayDate = November 2024
prism:doi = 10.1016/j.cmpb.2024.108375
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 39180914
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 108375
source-id = 23604
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S0169260724003687

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/85180171278

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/85180171278?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85180171278&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85180171278&origin=inward

The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI–Dynamic Contrast-Enhanced challenge; Magnetic Resonance in Medicine; May 2024; DOI: 10.1002/mrm.29909
prism:url = https://api.elsevier.com/content/abstract/scopus_id/85180171278
dc:identifier = SCOPUS_ID:85180171278
eid = 2-s2.0-85180171278
dc:creator = Shalom E.S.
prism:publicationName = Magnetic Resonance in Medicine
prism:issn = 07403194
prism:eIssn = 15222594
prism:volume = 91
prism:issueIdentifier = 5
prism:pageRange = 1803-1821
prism:coverDate = 2024-05-01
prism:coverDisplayDate = May 2024
prism:doi = 10.1002/mrm.29909
citedby-count = 6

@_fa = true
affilname = University of Leeds
affiliation-city = Leeds
affiliation-country = United Kingdom

@_fa = true
affilname = The University of Sheffield
affiliation-city = Sheffield
affiliation-country = United Kingdom

pubmed-id = 38115695
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number =
source-id = 17267
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii =

Last 5 articles (PubMed)