Nicola Toschi

Professore Ordinario, Responsabile di Sezione

PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali

toschi@med.uniroma2.it

+39 06 72596008

Biografia

Nicola Toschi è Professore Ordinario di Fisica Medica presso l’Università di Roma “Tor Vergata” e membro del personale di ricerca e della facoltà presso il Centro Athinoula A. Martinos per l’Imaging Biomedico (Harvard Medical School).

In precedenza ha lavorato come consulente strategico presso McKinsey & Company, come coordinatore per la Convenzione delle Nazioni Unite sui cambiamenti climatici, con la RAI e come coordinatore di progetti con AMREF. La sua ricerca è interdisciplinare, con particolare attenzione alle soluzioni scientifiche e tecnologiche per l’impiego di tecniche fisiche e matematiche avanzate al fine di estrarre informazioni quantitative di valore investigativo, diagnostico e prognostico in un contesto clinico.

È membro senior della società IEEE, membro attivo dell’ISMRM e dell’OHBM, membro fondatore dell’Alzheimer Precision Medicine Initiative (AMPI) e membro del Technical Committee on Cardiopulmonary Systems.

Titoli

  • B.Sc. Physics (Imperial College, London)
  • M.Sc. Applied Mathematics (ST. Catherine’s College, Oxford, UK),
  • MSc. Physics (University of Rome Tor Vergata)
  • PhD Natural Sciences (Ludwig Maximilian University of Munich, max Planck Institute of Psychiatry)
  • Specialization School in Medical Physics (University of Rome Tor Vergata).

Profili

Created with Fabric.js 4.6.0

Scopus

Orcid

Google Scholar

Ultime 5 pubblicazioni (Scopus)

opensearch:totalResults = 315
opensearch:startIndex = 0
opensearch:itemsPerPage = 25
@role = request
@searchTerms = AU-ID(6602297547)
@startPage = 0

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = first
@href = https://api.elsevier.com/content/search/scopus?start=0&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = next
@href = https://api.elsevier.com/content/search/scopus?start=25&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json

@_fa = true
@ref = last
@href = https://api.elsevier.com/content/search/scopus?start=290&count=25&query=AU-ID%286602297547%29&apiKey=6ae70c855c11cca26b94ca23c22dcbcf
@type = application/json


inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105014517393

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105014517393?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105014517393&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105014517393&origin=inward

@_fa = true
@ref = full-text
@href = https://api.elsevier.com/content/article/eid/1-s2.0-S1566253525007225

Towards neural foundation models for vision: Aligning EEG, MEG, and fMRI representations for decoding, encoding, and modality conversion; Information Fusion; February 2026; DOI: 10.1016/j.inffus.2025.103650
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105014517393
dc:identifier = SCOPUS_ID:105014517393
eid = 2-s2.0-105014517393
dc:creator = Ferrante M.
prism:publicationName = Information Fusion
prism:issn = 15662535
prism:eIssn =
prism:volume = 126
prism:issueIdentifier =
prism:pageRange =
prism:coverDate = 2026-02-01
prism:coverDisplayDate = February 2026
prism:doi = 10.1016/j.inffus.2025.103650
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id =
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 103650
source-id = 26099
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherhybridgold

value:

$ = All Open Access

$ = Hybrid Gold

prism:isbn:

@_fa =
$ =

pii = S1566253525007225

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105023212114

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105023212114?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105023212114&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105023212114&origin=inward

Reconstructing music perception from brain activity using a prior guided diffusion model; Scientific Reports; December 2025; DOI: 10.1038/s41598-025-26095-w
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105023212114
dc:identifier = SCOPUS_ID:105023212114
eid = 2-s2.0-105023212114
dc:creator = Ciferri M.
prism:publicationName = Scientific Reports
prism:issn =
prism:eIssn = 20452322
prism:volume = 15
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s41598-025-26095-w
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 41298548
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 42108
source-id = 21100200805
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

value:

$ = All Open Access

$ = Gold

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105013869712?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105013869712&origin=inward

Evidence for compositionality in fMRI visual representations via Brain Algebra; Communications Biology; December 2025; DOI: 10.1038/s42003-025-08706-4
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105013869712
dc:identifier = SCOPUS_ID:105013869712
eid = 2-s2.0-105013869712
dc:creator = Ferrante M.
prism:publicationName = Communications Biology
prism:issn =
prism:eIssn = 23993642
prism:volume = 8
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s42003-025-08706-4
citedby-count = 0

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 40847014
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 1263
source-id = 21100924827
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/86000726427

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/86000726427?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=86000726427&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=86000726427&origin=inward

Activation of endogenous retroviruses characterizes the maternal-fetal interface in the BTBR mouse model of autism spectrum disorder; Scientific Reports; December 2025; DOI: 10.1038/s41598-025-91541-8
prism:url = https://api.elsevier.com/content/abstract/scopus_id/86000726427
dc:identifier = SCOPUS_ID:86000726427
eid = 2-s2.0-86000726427
dc:creator = Cipriani C.
prism:publicationName = Scientific Reports
prism:issn =
prism:eIssn = 20452322
prism:volume = 15
prism:issueIdentifier = 1
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1038/s41598-025-91541-8
citedby-count = 1

@_fa = true
affilname = Università degli Studi di Roma "Tor Vergata"
affiliation-city = Rome
affiliation-country = Italy

pubmed-id = 40065061
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 8271
source-id = 21100200805
openaccess = 1
openaccessFlag = true
value:

$ = all

$ = publisherfullgold

$ = repository

$ = repositoryam

value:

$ = All Open Access

$ = Gold

$ = Green

prism:isbn:

@_fa =
$ =

pii =

inizio

@_fa = true

@_fa = true
@ref = self
@href = https://api.elsevier.com/content/abstract/scopus_id/105021200061

@_fa = true
@ref = author-affiliation
@href = https://api.elsevier.com/content/abstract/scopus_id/105021200061?field=author,affiliation

@_fa = true
@ref = scopus
@href = https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105021200061&origin=inward

@_fa = true
@ref = scopus-citedby
@href = https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105021200061&origin=inward

Big multiple sclerosis data network: novel modelling approaches for real-world data analysis; Journal of Neurology; December 2025; DOI: 10.1007/s00415-025-13439-9
prism:url = https://api.elsevier.com/content/abstract/scopus_id/105021200061
dc:identifier = SCOPUS_ID:105021200061
eid = 2-s2.0-105021200061
dc:creator = Trojano M.
prism:publicationName = Journal of Neurology
prism:issn = 03405354
prism:eIssn = 14321459
prism:volume = 272
prism:issueIdentifier = 12
prism:pageRange =
prism:coverDate = 2025-12-01
prism:coverDisplayDate = December 2025
prism:doi = 10.1007/s00415-025-13439-9
citedby-count = 0

@_fa = true
affilname = Università degli studi di Bari Aldo Moro
affiliation-city = Bari
affiliation-country = Italy

pubmed-id = 41206399
prism:aggregationType = Journal
subtype = ar
subtypeDescription = Article
article-number = 754
source-id = 16751
openaccess = 0
openaccessFlag = false
value:

$ =

value:

$ =

prism:isbn:

@_fa =
$ =

pii =

Ultime 5 pubblicazioni (PubMed)

  • Towards Intelligent Agents for Radiotherapy: Integrating Exploration-Exploitation with Foundation Models
    on 3 Dicembre 2025

    This study proposes an automated approach to radiotherapy treatment planning by integrating a reinforcement-learning-style iterative framework with a multimodal Large Language Model (LLM). We specifically investigate the problem of Beam Angle Optimization, a high-dimensional and non-convex subproblem of Treatment Planning. Our system employs GPT-4V to select candidate beam angles and analyze three-dimensional dose distributions generated by Monte Carlo simulations within the MatRAD environment....

  • Self-Supervised Transformer-Based Foundation Model for functional Magnetic resonance Imaging
    on 3 Dicembre 2025

    Functional Magnetic Resonance Imaging is a powerful tool for studying brain function but presents challenges due to high dimensionality and variability. We propose a self-supervised transformer-based foundation model using a masked autoencoder to learn generalizable representations of fMRI time series. Trained on the Human Connectome Project (HCP) S1200 dataset, the model is evaluated on cognitive task classification and neuroticism prediction using linear, MLP, and ConvLSTM probes under...

  • Optimal Transport and Contrastive Learning for Brain Decoding of Musical Perception
    on 3 Dicembre 2025

    Brain decoding aims to reconstruct external stimuli from brain activity, providing insights into the neural representation of cognitive experiences. Music decoding from functional magnetic resonance imaging (fMRI) is particularly challenging due to the complexity of auditory processing and the temporal limitations of fMRI signals. In this study, we introduce a novel decoding framework that improves the alignment between fMRI activity and latent musical representations extracted using a...

  • From Radiomics to Generative Models: Evaluating Early Radiation Effects in Metastatic Brain Lesions
    on 3 Dicembre 2025

    Brain metastases (BM), along with primary central nervous system lymphomas and glioblastomas, represent the majority of malignant brain tumors encountered in clinical neuro-oncology, driving a need for advanced imaging techniques and post-processing methods to improve their characterization and treatment monitoring. In particular, stereotactic radiosurgery (SRS), a cornerstone treatment for BM, delivers high-dose, focused radiation (>20 Gy) to target lesions with minimal impact on surrounding...

  • Advancing Generalisable Neural Network-Based PET Quantification: A Multicenter [11C]PBR28 study
    on 3 Dicembre 2025

    Quantifying the volume of distribution (V(T)) in Positron Emission Tomography (PET) is widely considered the gold standard for assessing tracer binding. However, this process requires an accurate estimation of the tracer's input function (IF) obtained through arterial sampling and metabolite correction-procedures that are both invasive and technically demanding. To overcome these limitations, we introduce a neural network-based framework for estimating the IF directly from [^(11)C]PBR28 dynamic...